吉米多維奇數(shù)學分析習題集在國內有很大影響,高等教育出版社取得該習題集的專有出版權,并得到授權全權處理國內發(fā)生的侵權行為。國內市場上,習題集本身已有很多選解、全解流通,部分質量不高的習題解答,并不能讓學生正確地利用習題集,促進對分析課程的學習。本書區(qū)別于習題全解,其目的是站在一個更高的層面,讓讀者利用本習題集掌握好分析課程的基本功,而不是淹沒在茫茫題海之中,成為做題的奴隸。書中素材的選取和結構的設計將圍繞這個初衷展開。
使用說明
第一章 分析引論
1.1 實 數(shù)(習題1-40)
1.1.1 數(shù)學歸納法(習題1-10)
1.1.2 有理數(shù)集的分割(習題11-13)
1.1.3 確界的定義與性質(習題15-20)
1.1.4 含有絕對值的不等式(習題21-30)
1.1.5 絕對誤差和相對誤差(習題31-40)
1.1.6 補注(習題5,14)
1.2 數(shù)列理論(習題41-150)
1.2.1 極限的定義與計算(習題41-57)
1.2.2 幾個極限證明題(習題58-68)
1.2.3 與數(shù)e有關的習題(習題69-75(a),146-147)
1.2.4 單調有界數(shù)列收斂定理(習題77-81)
1.2.5 柯西收斂準則(習題82-88)
1.2.6 予列、聚點與上下極限(習題89-134)
1.2.7 柯西命題和施托爾茨定理(習題138-145)
1.2.8 迭代生成的數(shù)列(習題148-150)
1.2.9 補注(習題76,75(b),136-137,135)
1.3 函數(shù)的概念(習題151-236)
1.3.1 關于函數(shù)概念的基本訓練(習題151-196)
1.3.2 擬合與插值(習題197-202)
1.3.3 復合函數(shù)(習題203-213.2)
1.3.4 單調性、反函數(shù)和奇偶性(習題214-232)
1.3.5 周期函數(shù)(習題233-236)
1.3.6 補注
1.4 函數(shù)的圖像表示(習題237-380)
1.4.1 有理函數(shù)的圖像(習題237-265)
1.4.2 無理函數(shù)、冪函數(shù)和初等超越函數(shù)的圖像(習題266-324.2)
1.4.3 關于圖像運算的一般規(guī)律(習題325-367)
1.4.4 反函數(shù)、用參數(shù)表示的函數(shù)和隱函數(shù)的圖像(習題368-370.2)
1.4.5 極坐標系中的函數(shù)圖像(習題371.1-371.3)
1.4.6 用函數(shù)圖像求方程(組)的近似解(習題372-380)
1.4.7 補注
1.5 函數(shù)的極限(習題381-644)
1.5.1 有界性、確界和振幅(習題381-400)
1.5.2 函數(shù)極限的定義(習題401-407)
1.5.3 有理函數(shù)的極限計算(習題408-434)
1.5.4 無理函數(shù)的極限計算(習題435-470)
1.5.5 初等超越函數(shù)的極限計算(習題471-591,602,604-605)
1.5.6 雜題(習題592-601,603,613-636,641-644)
1.5.7 補注(習題606-612,637-640)
1.6 符號O(習題645-661)
1.7 函數(shù)的連續(xù)性(習題662-758)
1.7.1 連續(xù)性的定義(習題662-674)
1.7.2 連續(xù)性分析與作圖(習題675-733)
1.7.3 連續(xù)函數(shù)的局部性質(習題734-747,749-750)
1.7.4 連續(xù)函數(shù)的整體性質(習題751,753-757)
1.7.5 補注(習題748,752,758)
1.8 反函數(shù).由參數(shù)方程確定的函數(shù)(習題759-784)
1.8.1 反函數(shù)的存在性(習題759-766)
1.8.2 反函數(shù)的單值連續(xù)分支(習題767-779)
1.8.3 由參數(shù)方程確定的函數(shù)(習題780-784)
1.9 函數(shù)的一致連續(xù)性(習題785-808)
1.10 函數(shù)方程(習題809-820)
1.10.1 柯西方法(習題809-820)185
1.10.2 補注
第二章 一元微分學
2.1 顯函數(shù)的導數(shù)(習題821-1033)
2.1.1 導數(shù)的定義(習題821-833)
2.1.2 導數(shù)的計算(習題834-989)
2.1.3 雜題(習題990-1023)
2.1.4 應用題(習題1024-1033)
2.2 反函數(shù)、用參數(shù)表示的函數(shù)和隱函數(shù)的導數(shù)(習題1034-1054)
2.2.1 反函數(shù)的導數(shù)(習題1034-1037)
2.2.2 用參數(shù)表示的函數(shù)的導數(shù)(習題1038-1047)
2.2.3 隱函數(shù)的導數(shù)(習題1048-1054)
2.3 導數(shù)的幾何意義(習題1055-1082)
2.4 函數(shù)的微分(習題1083-1110)
2.5 高階導數(shù)和微分(習題1111-1234)
2.5.1 顯函數(shù)的高階導數(shù)和微分的計算(習題1111-1139)
2.5.2 非顯函數(shù)的高階導數(shù)和微分的計算(習題1140-1150)
2.5.3 應用題(習題1151-1155)
2.5.4 高階導數(shù)與微分計算(續(xù))(習題1156-1185)
2.5.5 n階導數(shù)與微分計算(習題118L1234)
2.6 羅爾定理.拉格朗日定理和柯西定理(習題1235-1267)
2.6.1 羅爾定理(習題1235-1243)
2.6.2 拉格朗日中值定理(習題1244-1251)
2.6.3 柯西中值定理(習題1252-1253)261
2.6.4 中值定理的其他應用(習題1254-1265)262
2.6.5 補注(習題1266-1267)
2.7 函數(shù)的遞增與遞減.不等式(習題1268-1297)
2.7.1 單調性分析(習題1268-1287)
2.7.2 不等式(習題1288-1295,1297)
2.7.3 補注(習題1296)
2.8 凹凸性.拐點(習題1298-1317)
2.8.1 凹凸性分析(習題1298-1310,1313)
2.8.2 與凹凸性有關的一些證明題(習題1311-1312,131L1317)
2.8.3 補注
2.9 不定式極限(習題1318-1375)
2.9.1 不定式計算Ⅰ(習題1318-1338,1358-1360,1367,1368(b))
2.9.2 不定式計算Ⅱ(習題1339-1357,1361-1366,1368(a),1369-1370)
2.9.3 雜題(習題1371-1375)
2.9.4 補注
2.10 泰勒公式(習題1376-1413)
2.10.1 泰勒公式計算(習題1376-1392)
2.10.2 若干證明題(習題1393)
2.10.3 近似計算與誤差估計(習題1394-1397)
2.10.4 局部泰勒公式的一些應用(習題1398-1413)
2.11 函數(shù)的極值.函數(shù)的最大值和最小值(習題1414-1470)
2.11.1 極值的研究(習題1414-1428)
2.11.2 極值、最值和確界的計算(習題1429-1455)
2.11.3 不等式證明(習題1456)
2.11.4 偏差計算(習題1457-1461)
2.11.5 根的個數(shù)問題(習題1462-1470)
2.11.6 補注
2.12 根據(jù)特征點作函數(shù)圖像(習題1471-1555)
2.12.1 有理函數(shù)的圖像(習題1471-1483)
2.12.2 無理函數(shù)與初等超越函數(shù)的圖像(習題1484-1530)
2.12.3 參數(shù)方程與隱函數(shù)方程表示的曲線(習題1531-1545)
2.12.4 極坐標系中的函數(shù)圖像(習題1546-1550)
2.12.5 曲線族的圖像(習題1551-1555)
2.12.6 補注
2.13 函數(shù)的極大值和極小值問題(習題1556-1590)
2.14 曲線相切.曲率圓.漸屈線(習題1591-1616)
2.15 方程的近似解(習題1617-1627)
附錄一 1.4的圖像參考答案
附錄二 2.12的圖像參考答案
附錄三 命題索引
參考文獻