不斷有許多只言片語的數(shù)學(xué)傳聞從導(dǎo)師傳到學(xué)生或者從同事傳到同事,但這些常常是模糊的,而在正式文獻(xiàn)中去進(jìn)行討論又顯得不甚嚴(yán)肅。通常對知道這種“數(shù)學(xué)傳說”的人來說也只是個碰巧的機會而已。但是到了今天,這樣一些只言片語也可通過研究博客這種半正式的媒體進(jìn)行有效和高效率的傳播。這本書便是由博客產(chǎn)生的。
Preface
A remark on notation
Acknowledgments
Chapter 1. Expository Articles
§1.1. The blue-eyed islanders puzzle
§1.2. Kleiner's proof of Gromov's theorem
§1.3. The van der Corput lemma, and equidistribution on nilmanifolds
§1.4. The strong law oflarge numbers
§1.5. Tate's proof of the functional equation
§1.6. The divisor bound
§1.7. The Lucas-Lehmer test for Mersenne primes
§1.8. Finite subsets of groups with no finite models
§1.9. Small samples, and the margin of error
§1.10. Non-measurable sets via non-standard analysis
§1.11. A counterexample to a strong polynomial Freiman-Ruzsa conjecture
§1.12. Some notes on "non-classical" polynomials in finite characteristic
§1.13. Cohomology for dynamical systems
Chapter 2. Ergodic Theory
§2.1. Overview
§2.2. Three categories of dynamical systems
§2.3. Minimal dynamical systems, recurrence, and the Stone-Cechcompactification
§2.4. Multiple recurrence
§2.5. Other topological recurrence results
§2.6. Isometric systems and isometric extensions
§2.7. Structural theory of topological dynamical systems
§2.8. The mean ergodic theorem
§2.9. Ergodicity
§2.10. The Furstenberg correspondence principle
§2.11. Compact systems
§2.12. Weakly mixing systems
§2.13. Compact extensions
§2.14. Weakly mixing extensions
§2.15. The Furstenberg-Zimmer structure theorem and the Furstenberg recurrence theorem
§2.16. A Ratner-type theorem for nilmanifolds
§2.17. A Ratner-type theorem for S/2(R) orbits
Chapter 3. Lectures in Additive Prime Number Theory
§3.1. Structure and randomness in the prime numbers
§3.2. Linear equations in primes
§3.3. Small gaps between primes
§3.4. Sieving for almost primes and expanders
Bibliography
Index