《離散數(shù)學(第2版)/21世紀高等學校本科系列教材》分10章介紹離散數(shù)學的幾大基礎內(nèi)容:數(shù)理邏輯、集合論、圖論、代數(shù)結(jié)構及組合論初步。它們分別是:命題邏輯、謂詞邏輯、集合論、二元關系、函數(shù)、圖論、特殊圖、代數(shù)系統(tǒng)、格與布爾代數(shù)、組合論基礎。《離散數(shù)學(第2版)/21世紀高等學校本科系列教材》將離散數(shù)學中的一些常用算法細化后分別插入到相應的章節(jié)中去,為通過編程、上機實踐來加深對基礎內(nèi)容的理解作必要的引導。《離散數(shù)學(第2版)/21世紀高等學校本科系列教材》理論體系完整,內(nèi)容較為豐富,文字簡明、易懂且附有較多的例題及練習題。
《離散數(shù)學(第2版)/21世紀高等學校本科系列教材》可作為計算機、電子技術、信息、管理等學科、專業(yè)的本科學生的教材,也可作為大學?萍爸械葘I(yè)學校相應學科、專業(yè)的教學參考書,亦可作為廣大青年和工程技術人員的閱讀、參考資料。
第1章 命題邏輯
1.1 命題與合式公式
1.2 邏輯等值式
1.3 范式
1.5 推理理論
1.5 命題邏輯中的有關算法
習題1
第2章 謂詞邏輯
2.1 謂詞邏輯的基本概念
2.2 謂詞公式與等值演算
2.3 推理理論
習題2
第3章 集合論
3.1 集合論基礎
3.2 集合的運算
3.3 集合的包含與計數(shù)
3.5 實現(xiàn)集合基本運算的算法
習題3
第5章 二元關系
4.1 二元關系及其基本性質(zhì)
4.2 二元關系的運算
4.3 等價關系與偏序關系
4.5 有關關系的算法
習題5
第5章 函數(shù)
5.1 函數(shù)的概念與運算
5.2 特征函數(shù)與模糊子集
5.3 自然數(shù)與集合的基數(shù)
5.5 判定映射及其類型與求特征函數(shù)的算法
習題5
第6章 圖論
6.1 圖的基本概念
6.2 路徑及圖的連通性
6.3 圖的矩陣表示
6.5 歐拉圖與哈密爾頓圖
6.5 圖論基礎理論中的算法
習題6
第7章 特殊圖
7.1 樹的概念及性質(zhì)
7.2 平面圖
7.3 二分圖與匹配
7.5 連通度與網(wǎng)絡流
7.5 求最小生成樹和最優(yōu)二元樹的算法
習題7
第8章 代數(shù)系統(tǒng)
8.1 代數(shù)運算及代數(shù)系統(tǒng)
8.2 同態(tài)與同構
8.3 同余關系與商代數(shù)
8.5 群
8.5 環(huán)與域
8.6 代數(shù)結(jié)構中的算法
習題8
第9章 格與布爾代數(shù)
9.1 格的概念及基本性質(zhì)
9.2 特殊格
9.3 布爾代數(shù)
習題9
第10章 組合論基礎
10.1 排列與組合
10.2 容斥原理與鴿巢原理
10.3 母函數(shù)與遞推關系
習題10
參考文獻