金融工程和計(jì)算: 原理數(shù)學(xué)算法(影印版)
定 價(jià):85 元
叢書名:金融數(shù)學(xué)叢書
- 作者:呂育道 著
- 出版時(shí)間:2008/5/1
- ISBN:9787040239805
- 出 版 社:高等教育出版社
- 中圖法分類:F83
- 頁碼:627
- 紙張:膠版紙
- 版次:1
- 開本:16開
《金融工程和計(jì)算:原理數(shù)學(xué)算法》(影印版)全面討論了金融工程背后的理論和數(shù)學(xué),并強(qiáng)調(diào)了在當(dāng)今資本市場(chǎng)中金融工程實(shí)際應(yīng)用的計(jì)算。與大多數(shù)有關(guān)投資學(xué)、金融工程或衍生證券的書不同的是,《金融工程和計(jì)算:原理數(shù)學(xué)算法》(影印版)從金融學(xué)的基本觀念出發(fā),逐步構(gòu)建理論。在現(xiàn)代金融學(xué)中所需要的高級(jí)數(shù)學(xué)概念以一種可接受的層次來闡釋。這樣,它就為金融方面的MBA、有志于從事金融業(yè)的理工科學(xué)生、計(jì)算金融的研究工作者、系統(tǒng)分析師和金融工程師在這一主題上提供了全面的基礎(chǔ)。
構(gòu)建理論的同時(shí),作者介紹了在定價(jià)、風(fēng)險(xiǎn)管理和證券組合管理方面的計(jì)算技巧的算法,并且對(duì)它們的效率進(jìn)行了分析。對(duì)金融證券和衍生證券的定價(jià)是《金融工程和計(jì)算:原理數(shù)學(xué)算法》(影印版)的中心論題。各種各樣的金融工具都得到討論:債券、期權(quán)、期貨、遠(yuǎn)期、利率衍生品、有抵押支持的證券、嵌入期權(quán)的債券,以及諸如此類的其他工具。為便于參考使用,每種金融工具都以簡短而自成體系的一章來論述。
《金融工程和計(jì)算》由劍橋大學(xué)出版社出版,原書名為:Financial Engineering and Computation: Principles, Mathematics, and Algorithms,是一本非常優(yōu)秀的有關(guān)金融計(jì)算的圖書。 如今打算在金融領(lǐng)域工作的學(xué)生和專家不僅要掌握先進(jìn)的概念和數(shù)學(xué)模型,還要學(xué)會(huì)如何在計(jì)算上實(shí)現(xiàn)這些模型。《金融工程和計(jì)算》內(nèi)容廣泛,不僅介紹了金融工程背后的理論和數(shù)學(xué),并把重點(diǎn)放在了計(jì)算上,以便和金融工程在今天資本市場(chǎng)的實(shí)際運(yùn)作保持一致!督鹑诠こ毯陀(jì)算》不同于大多數(shù)的有關(guān)投資、金融工程或者衍生證券方面的書,而是從金融的基本想法開始,逐步建立理論。作者提供了很多定價(jià)、風(fēng)險(xiǎn)評(píng)估以及項(xiàng)目組合管理的算法和理論。《金融工程和計(jì)算》的重點(diǎn)是有關(guān)金融產(chǎn)品和衍生證券、期權(quán)、期貨、遠(yuǎn)期、利率衍生產(chǎn)品、抵押證券等等的定價(jià)問題。每個(gè)工具都有簡要的介紹,每章都可以獨(dú)立被引用。《金融工程和計(jì)算》的算法均使用Java算法編程實(shí)現(xiàn)的,并可以在相關(guān)的網(wǎng)站上下載。《金融工程和計(jì)算》可供金融MBA、金融學(xué)和金融工程方向的學(xué)生、計(jì)算金融的研究人員以及金融分析師參考使用。《金融工程和計(jì)算:原理數(shù)學(xué)算法》(影印版)是其中一個(gè)分冊(cè)!
呂育道(Yuh—Dauh Lyuu)教授在哈佛大學(xué)獲得計(jì)算機(jī)科學(xué)專業(yè)的博土學(xué)位。他過去的職位包括貝爾實(shí)驗(yàn)室的技術(shù)人員、NEC研究所(普林斯頓)的研究員以及花旗證券(紐約)的助理副總裁。他目前是臺(tái)灣大學(xué)的計(jì)算機(jī)科學(xué)與信息工程學(xué)教授和金融學(xué)教授。他的前一本著作是《信息散布和并行計(jì)算》(Information Dispersal and Parallel Computation)。呂教授在計(jì)算機(jī)科學(xué)和金融兩方面都出版過著作,他也持有美國專利,并曾因指導(dǎo)優(yōu)秀研究生論文多次獲獎(jiǎng)。
Preface
Useful Abbreviations
1 Introduction
1.1 Modern Finance: A Brief History
1.2 Financial Engineering and Computation
1.3 Financial Markets
1.4 Computer Technology
2 Analysis of Algorithms
2.1 Complexity
2.2 Analysis of Algorithms
2.3 Description of Algorithms
2.4 Software Implementation
3 Basic Financial Mathematics
3.1 Time Value of Money
3.2 Annuities
3.3 Amortization
3.4 Yields
3.5 Bonds
4 Bond Price Volatility
4.1 Price Volatility
4.2 Duration
4.3 Convexity
5 Term Structure of Interest Rates
5.1 Introduction
5.2 Spot Rates
5.3 Extracting Spot Rates from Yield Curves
5.4 Static Spread
5.5 Spot Rate Curve and Yield Curve
5.6 Forward Rates
5.7 Term Structure Theories
5.8 Duration and Immunization Revisited
6 Fundamental Statistical Concepts
6.1 Basics
6.2 Regression
6.3 Correlation
6.4 Parameter Estimation
7 Option Basics
7.1 Introduction
7.2 Basics
7.3 Exchange-Traded Options
7.4 Basic Option Strategies
8 Arbitrage in Option Pricing
8.1 The Arbitrage Argument
8.2 Relative Option Prices
8.3 Put-Call Parity and Its Consequences
8.4 Early Exercise of American Options
8.5 Convexity of Option Prices
8.6 The Option Portfolio Property
9 Option Pricing Models
9.1 Introduction
9.2 The Binomial Option Pricing Model
9.3 The Black-Scholes Formula
9.4 Using the Black-Scholes Formula
9.5 American Puts on a Non-Dividend-Paying Stock
9.6 Options on a Stock that Pays Dividends
9.7 Traversing the Tree Diagonally
10 Sensitivity Analysis of Options
10.1 Sensitivity Measures (\"The Greeks\")
10.2 Numerical Techniques
11 Extensions of Options Theory
11.1 Corporate Securities
11.2 Barrier Options
11.3 Interest Rate Caps and Floors
11.4 Stock Index Options
11.5 Foreign Exchange Options
11.6 Compound Options
11.7 Path-Dependent Derivatives
12 Forwards, Futures, Futures Options, Swaps
12.1 Introduction
12.2 Forward Contracts
12.3 Futures Contracts
12.4 Futures Options and Forward Options
12.5 Swaps
13 Stochastic Processes and Brownian Motion
13.1 Stochastic Processes
13.2 Martingales (\"Fair Games\")
13.3 Brownian Motion
13,4 Brownian Bridge
14 Continuous-Time Financial Mathematics
14.1 Stochastic Integrals
14.2 Ito Processes
14.3 Applications
14.4 Financial Applications
15 Continuous-Time Derivatives Pricing
15.1 Partial Differential Equations
15.2 The Black-Schotes Differential Equation
15.3 Applications
15.4 General Derivatives Pricing
15.5 Stochastic Volatility
16 Hedging
16.1 Introduction
16.2 Hedging and Futures
16.3 Hedging and Options
17 Trees
17.1 Pricing Barrier Options with Combinatorial Methods
17.2 Trinomial Tree Algorithms
17.3 Pricing Multivariate Contingent Claims
18 Numerical Methods
18.1 Finite-Difference Methods
18.2 Monte Carlo Simulation
18.3 Quasi-Monte Carlo Methods
19 Matrix Computation
19.1 Fundamental Definitions and Results
19.2 Least-Squares Problems
19.3 Curve Fitting with Splines
20 Time Series Analysis
20.1 Introduction
20.2 Conditional Variance Models for Price Volatility
21 Interest Rate Derivative Securities
21.1 Interest Rate Futures and Forwards
21.2 Fixed-Income Options and Interest Rate Options
21.3 Options on Interest Rate Futures
21.4 Interest Rate Swaps
22 Term Structure Fitting
22.1 Introduction
22.2 Linear Interpolation
22.3 Ordinary Least Squares
22.4 Splines
22.5 The Nelson-Siegel Scheme
23 Introduction to Term Structure Modeling
23.1 Introduction
23.2 The Binomial Interest Rate Tree
23.3 Applications in Pricing and Hedging
23.4 Volatility Term Structures
24 Foundations of Term Structure Modeling
24.1 Terminology
24.2 Basic Relations
24.3 Risk-Neutral Pricing
24.4 The Term Structure Equation
24.5 Forward-Rate Process
24.6 The Binomial Model with Applications
24.7 Black-Scholes Models
25 Equilibrium Term Structure Models
25.1 The Vasicek Model
25.2 The Cox-Ingersoll-Ross Model
25.3 Miscellaneous Models
25.4 Model Calibration
25.5 One-Factor Short Rate Models
26 No-Arbitrage Term Structure Models
26.1 Introduction
26.2 The Ho-Lee Model
26.3 The Black-Derman-Toy Model
26.4 The Models According to Hull and White
26.5 The Heath-Jarrow-Morton Model
26.6 The Ritchken-Sankarasubramanian Model
27 Fixed-Income Securities
27.1 Introduction
27.2 Treasury, Agency, and Municipal Bonds
27.3 Corporate Bonds
27.4 Valuation Methodologies
27.5 Key Rate Durations
28 Introduction to Mortgage-Backed Securities
28.1 Introduction
28.2 Mortgage Banking
28.3 Agencies and Securitization
28.4 Mortgage-Backed Securities
28.5 Federal Agency Mortgage-Backed Securities Programs
28.6 Prepayments
29 Analysis of Mortgage-Backed Securities
29.1 Cash Flow Analysis
29.2 Collateral Prepayment Modeling
29.3 Duration and Convexity
29.4 Valuation Methodologies
30 Collateralized Mortgage Obligations
30.1 Introduction
30.2 Floating-Rate Tranches
30.3 PAC Bonds
30.4 TAC Bonds
30.5 CMO Strips
30.6 Residuals
31 Modern Portfolio Theory
31.1 Mean-Variance Analysis of Risk and Return
31.2 The Capital Asset Pricing Model
31.3 Factor Models
31.4 Value at Risk
32 Software
32.1 Web Programming
32.2 Use of The Capitals Software
32.3 Further Topics
33 Answers to Selected Exercises
Bibliography
Glossary of Useful Notations
Index