孔隙水壓力對(duì)大型滑坡的影響預(yù)測(英文)
定 價(jià):59 元
叢書名:江西理工大學(xué)清江學(xué)術(shù)文庫
- 作者:Wen,Nie,Kui,Zhao 著
- 出版時(shí)間:2019/7/1
- ISBN:9787502481421
- 出 版 社:冶金工業(yè)出版社
- 中圖法分類:P642.22
- 頁碼:138
- 紙張:膠版紙
- 版次:1
- 開本:16開
《孔隙水壓力對(duì)大型滑坡的影響預(yù)測(英文)》通過降雨(雪)數(shù)據(jù)預(yù)測地下水及誘發(fā)的相關(guān)的滑坡運(yùn)動(dòng)來構(gòu)建一個(gè)大型滑坡的預(yù)測模塊。通過引入內(nèi)聚力-速度模塊,構(gòu)建了一個(gè)新的粘滯模型用來預(yù)測和描述滑坡的被地下水控制的準(zhǔn)靜態(tài)運(yùn)動(dòng)。為了更好的理解和模擬地下水和孔隙水壓力作用于滑坡啟動(dòng)、加速、減速及再次啟動(dòng),《孔隙水壓力對(duì)大型滑坡的影響預(yù)測(英文)》提供了重要的步驟。這些將有意義地貢獻(xiàn)于未來的基于機(jī)理模型而非簡單閾值的早期預(yù)警系統(tǒng)的研究。
Groundwater-pressure produced by precipitation plays an important role in determining landslide movements. For any process-related early warning system for hydrologically-induced landslides, the accurate estimation of groundwater-pressure from precipitation information and the related movement is a key component. Until now, the problem of how to predict the pore-pressure and following movement by the precipitation has no satisfactory solution, because of the complex nonlinear hydrogeological and geological system. But using advanced conceptual models and machine learning algorithm, the author of this book has carried out some cases applications to fill the knowledge gap. The book is an integration of research results over the past five years mainly based on the doctor book. The project obtained support from alpEWAS project (im Programm Geotechnologien Federal Ministry of Education and Research, Germany) and Opening Fund of State Key Laboratory of Geohazard Prevention and Geo-environment Protection (Chengdu University of Technology)-SKLGP2013K007, Some of the experimental and theoretical results have been published in major intemational journals, such as Natural Hazards and Earth System Sciences, Bulletin of Engineering Geology and the Environment, and Geofluids. The intemational peer review process for these English language joumals is an additional guarantee of quality.
1 Introduction
1.1 Problem statement and motivation
1.2 Research objectives
1.3 Book outline
1.4 Technical course
2 Literature review
2.1 Ove Niew
2.2 Classification of landslides
2.3 Causes of landslides
2.4 Hydrological controls of deep-seated landslides
2.5 Hydrogeological flow patterns relevant for deep-seated landslides
2.6 Estimating proportions of fluid and solid precipitation and snowmelt
2.6.1 Thresholds for fluid and solid precipitation
2.6.2 Temperature-index and energy-index snowmelt models
2.7 Estimating infiltration and groundwater fluctuations in hill slopes
2.7.1 Deternunistic physical models
2.7.2 Empirical-statistical models
2.8 Modelling quasi-static landslide movements (slope movement with complete sliding surface)
3 A modified tank model including snowmelt and infiltration time lags for deep-seated landslides
3.1 Introduction
3.2 Site descriptions
3.2.1 Geographical setting and geological overview
3.2.2 Tectonic overview and setting of the study site
3.2.3 Climatic conditions
3.2.4 Monitoring system and monitoring data
3.2.5 Historic events
3.3 Methods
3.3.1 The modified tank model including snowmelt and infiltration
3.3.2 Simpler approximations of slope hydrology
3.3.3 Determining the parameter of PWP calculation in the modified tank model
3.3.4 Snowmelt calculations in the modified tank model
3.4 Results
3.4.1 Performance of modified tank model in heavy rainfall season
3.4.2 Performance of modified tank model in snowmelt season
3.4.3 Performance of modified tank model throughout the monitoring period and error analysis
3.5 Discussions
3.5.1 Performance of modified tank model in heavy rainfall season
3.5.2 Performance of modified tank model in snowmelt season
3.5.3 Highlights of the modified model
3.5.4 Drawbacks and limitations
3.6 Conclusions
……
4 Physical tank experiments on groundwater level controls of slopes with homogenous materials
5 Physical tank experiments for estimation of groundwater considering slope structure controlling affection
6 Prediction of groundwater affecting deep-seated landslide quasi-static movement
7 Conclusion
References
Appendix