先進(jìn)電子封裝技術(shù)與關(guān)鍵材料叢書(shū)--TSV 3D RF Integration:HR-Si Interposer Technology(TSV三維射頻集成——高阻硅轉(zhuǎn)接板技術(shù))
定 價(jià):298 元
叢書(shū)名:先進(jìn)電子封裝技術(shù)與關(guān)鍵材料叢書(shū)
- 作者:馬盛林(Shenglin Ma)、金玉豐(Yufeng Jin) 著
- 出版時(shí)間:2021/12/1
- ISBN:9787122394842
- 出 版 社:化學(xué)工業(yè)出版社
- 中圖法分類:TN405
- 頁(yè)碼:273
- 紙張:
- 版次:01
- 開(kāi)本:16開(kāi)
三維射頻集成應(yīng)用是硅通孔(TSV)三維集成技術(shù)的重要應(yīng)用發(fā)展方向。隨著5G與毫米波應(yīng)用的興起,基于高阻硅TSV晶圓級(jí)封裝的薄膜體聲波諧振器(FBAR) 器件、射頻微電子機(jī)械系統(tǒng)(RF MEMS)開(kāi)關(guān)器件等逐漸實(shí)現(xiàn)商業(yè)化應(yīng)用,TSV三維異質(zhì)射頻集成逐漸成為先進(jìn)電子信息裝備領(lǐng)域工程化應(yīng)用的關(guān)鍵技術(shù)。
本書(shū)全面闡述面向三維射頻異質(zhì)集成應(yīng)用的高阻硅TSV轉(zhuǎn)接板技術(shù),包括設(shè)計(jì)、工藝、電學(xué)特性評(píng)估與優(yōu)化等研究,從TSV、共面波導(dǎo)傳輸線(CPW)等基本單元結(jié)構(gòu)入手,到集成無(wú)源元件(IPD)以及集成樣機(jī),探討金屬化對(duì)高頻特性的影響規(guī)律;展示基于高阻硅TSV的集成電感、微帶交指濾波器、天線等IPD元件;詳細(xì)介紹了2.5D集成四通道L波段接收組件、5~10GHz信道化變頻接收機(jī)、集成微流道散熱的2~6GHz GaN 功率放大器模塊等研究案例。本書(shū)也系統(tǒng)綜述了高阻硅TSV三維射頻集成技術(shù)的國(guó)內(nèi)外最新研究進(jìn)展,并做了詳細(xì)的對(duì)比分析與歸納總結(jié)。本書(shū)兼顧深度的同時(shí),力求從較為全面的視角,為本領(lǐng)域研究人員提供啟發(fā)思路,以助力我國(guó)在TSV三維射頻異質(zhì)集成技術(shù)研究的發(fā)展進(jìn)步。
本書(shū)可供微電子先進(jìn)封裝以及射頻模組領(lǐng)域研究人員、工程技術(shù)人員參考,也可供相關(guān)專業(yè)高等院校研究生及高年級(jí)本科生學(xué)習(xí)參考。
馬盛林,廈門(mén)大學(xué)機(jī)電工程系副教授,北京大學(xué)博士,北京大學(xué)微納米加工科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室客座研究員。發(fā)表論文50余篇,獲得專利20余項(xiàng),主要研究方向?yàn)榛诠柰ǹ椎娜S集成技術(shù)、MEMS及其應(yīng)用。
金玉豐,北京大學(xué)教授,東南大學(xué)博士,擔(dān)任北京大學(xué)微納米國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室主任多年。撰寫(xiě)三本關(guān)于先進(jìn)封裝技術(shù)的書(shū)籍,研究領(lǐng)域包括MEMS傳感器和與硅通孔相關(guān)的微系統(tǒng)三維集成技術(shù)。
Preface by Yufeng Jin ix
Preface by Shenglin Ma xi
Acknowledgments xv
About the authors xvii
1 Introduction to HR-Si interposer technology 1
1.1 Background 1
1.2 3D RF heterogeneous integration scheme 2
1.3 HR-Si interposer technology 7
1.4 TGV interposer technology 16
1.5 Summary 23
1.6 Main work of this book 24
References 25
2 Design, process, and electrical verification of HR-Si interposer for 3D heterogeneous RF integration 27
2.1 Introduction 27
2.2 Design and fabrication process of HR-Si TSV interposer 31
2.3 Design and analysis of RF transmission structure built on HR-Si TSV interposer 38
2.4 Research on HR-Si TSV interposer fabrication process 43
2.4.1 Double-sided deep reactive ion etching (DRIE) to open HR-Si TSV 43
2.4.2 Thermal oxidation to form firm insulation layer 44
2.4.3 Patterned Cu electroplating to achieve metallization and establish RDL layer 45
2.4.4 Electroless nickel electroless palladium immersion gold (ENEPIG) 54
2.4.5 Surface passivation 54
2.5 Electrical characteristics analysis of transmission structure on HR-Si TSV interposer 55
2.6 Conclusion 61
References 63
3 Design, verification, and optimization of novel 3D RF TSV based on HR-Si interposer 65
3.1 Introduction 65
3.2 HR-Si TSV-based coaxial-like transmission structure 69
3.3 Redundant RF TSV transmission structure 70
3.4 Sample processing and test result analysis 72
3.5 Optimization of HR-Si TSV interposer 83
3.6 Conclusion 90
References 93
4 HR-Si TSV integrated inductor 95
4.1 Introduction 95
4.2 HR-Si TSV interposer integrated planar inductor 96
4.3 Research on 3D inductor based on HR-Si interposer 113
4.4 Summary 123
References 123
5 Verification of 2.5D/3D heterogeneous RF integration of HR-Si interposer 125
5.1 Introduction 125
5.2 Four-channel 2.5D heterogeneous integrated L-band receiver 126
5.3 3D heterogeneous integrated channelized frequency conversion receiver based on HR-Si interposer 132
5.3.1 HR-Si interposer integrated microstrip interdigital filter 134
5.3.2 Design, fabrication, and test of HR-Si interposer 142
5.3.3 3D heterogeneous integrated assembly and test 145
5.4 Conclusions 150
References 151
6 HR-Si interposer embedded microchannel 153
6.1 Introduction 153
6.2 Design of a HR-Si interposer embedded microchannel 158
6.3 Thermal characteristics analy sis of a TSV interposer embedded microchannel 161
6.3.1 Simplified calculation based on a variable diffusion angle 162
6.3.2 Direct calculation based on analytical formula 163
6.3.3 A fitting formula based on simulation results 164
6.3.4 Equivalent thermal resistance network based on the high thermal conductivity path 164
6.4 Process development of a TSV interposer embedded microchannel 172
6.5 Characterization of cooling capacity of HR-Si interposer with an embedded microchannel 176
6.6 Evaluation of HR-Si interposer embedded with a cooling microchannel 178
6.7 Application verification of HR-Si interposer embedded with microchannel 188
6.8 Conclusions 191
References 192
7 Patch antenna in stacked HR-Si interposers 197
7.1 Introduction 197
7.2 Theoretical basis of patch antenna 200
7.3 Design of a patch antenna in stacked HR-Si interposers 200
7.4 Processing of a patch antenna in stacked HR-Si interposers 213
7.5 Test and analysis of patch antenna in stacked HR-Si TSV interposer 213
7.6 Summary 222
References 222
8 Through glass via technology 225
8.1 Introduction 225
8.2 TGV fabrication 225
8.3 Metallization of TGV 228
8.4 Passive devices based on TGV technology 230
8.4.1 Technology description 230
8.4.2 MIM capacitor 230
8.4.3 TGV-based bandpass filter 231
8.5 Embedded glass fan-out wafer-level package technology 235
8.5.1 Technology description 235
8.5.2 AIP enabled by eGFO package technology 236
8.5.3 3D RF integration enabled by eGFO package technology 242
8.6 2.5D heterogeneous integrated L-band receiver based on TGV interposer 242
8.7 Conclusions 249
References 250
9 Conclusion and outlook 251
Appendix 1 Abbreviations 255
Appendix 2 Nomenclature 259
Appendix 3 Conversion factors 267
Index 269