關(guān)于我們
書單推薦
新書推薦
|
社交推薦中的用戶相似度優(yōu)化研究
本文通過對推薦系統(tǒng)中用戶相似度的設(shè)計優(yōu)化,解決了目前推薦系統(tǒng)中確定的數(shù)據(jù)無法準確描述人類模糊性情感的問題展開。推薦系統(tǒng)中相似度研究的最高目標(biāo)是盡可能的模擬人對研究對象的主觀感受,從工程角度來說是模擬同主觀認知盡可能一致的客觀相似度組合模型。主觀尋找相似用戶的過程可分為感知、理解和評價三個階段,基于此,本文提出了一種符合主觀特點的客觀相似度組合模型框架,主要工作圍繞三個階段展開如下:本文從代表性的相似度算法分析入手,分析影響用戶評分行為的相似性因素。同時,針對目前確定性數(shù)值化評分無法精準描述主觀模糊判斷的問題,采用三角模糊數(shù)的手段對主觀情感模糊化,更貼近人類非確定的表達習(xí)慣。并提出了新的用戶評分相似度,實現(xiàn)了用戶相似性多角度模糊感知工作。其次,針對數(shù)據(jù)稀疏性和冷啟動等問題,本文引入外部屬性數(shù)據(jù)在局部感知用戶評分相似性的基礎(chǔ)上全局理解用戶相似度,最后設(shè)計出具有因果關(guān)系的多層上下文可感知模型,解決目前使用深度學(xué)習(xí)帶來的可解釋性不強的問題,實現(xiàn)動態(tài)的個性化推薦。最后,評價則是以更加多樣的視角評定推薦的好壞。所以本文設(shè)計了具有降低推薦噪音的魯棒性系統(tǒng)評價指標(biāo),在考慮評分準度的同時考慮推薦的排序準確度等,解決目前推薦系統(tǒng)評價體系無法完整的、公平的比較算法優(yōu)劣的問題。
你還可能感興趣
我要評論
|