分析學(xué)教程.第3卷 測(cè)度與積分理論 復(fù)變量的復(fù)值函數(shù)(英文)
定 價(jià):118 元
叢書(shū)名:國(guó)外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[英]尼爾斯.雅各布著
- 出版時(shí)間:2023/6/1
- ISBN:9787576706130
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O17
- 頁(yè)碼:788
- 紙張:
- 版次:1
- 開(kāi)本:16開(kāi)
本書(shū)是分析學(xué)課程著作的第三卷,涵蓋了每個(gè)數(shù)學(xué)家都必須要研究的兩個(gè)主題,討論了勒貝格的積分理論和實(shí)變量的實(shí)值函數(shù)理論中的第一個(gè)結(jié)果,介紹了一個(gè)復(fù)變量的復(fù)值函數(shù)理論——習(xí)慣上簡(jiǎn)稱為“函數(shù)理論”。實(shí)值函數(shù)、傅里葉分析、函數(shù)分析、動(dòng)力系統(tǒng)理論、偏微分方程或變分法的高級(jí)理論等也都在本書(shū)中有所提及。
Preface
Introduction
List of Symbols
Part 6: Measure and Integration Theory
1 A First Look at a-Fields and Measures
2 Extending Pre-Measures. CarathSodory's Theorem
3 The Lebesgue-Borel Measure and Hausdorff Measures
4 Measurable Mappings
5 Integration with Respect to a Measure The Lebesgue Integral
6 The Radon-Nikodym Theorem and the Transformation Theorem
7 Almost Everywhere Statements, Convergence Theorems
8 Applications of the Convergence Theorems and More
9 Integration on Product Spaces and Applications
10 Convolutions of Functions and Measures
11 Differentiation Revisited
12 Selected Topics
Part 7: Complex-valued Functions of a Complex Variable
13 The Complex Numbers as a Complete Field
14 A Short Digression: Complex-valued Mappings
15 Complex Numbers and Geometry
16 Complex-Valued Functions of a Complex Variable
17 Complex Differentiation
18 Some Important Functions
19 Some More Topology
20 Line Integrals of Complex-valued Functions
21 The Cauchy Integral Theorem and Integral Formula
22 Power Series, Holomorphy and Differential Equations
23 Further Properties of Holomorphic Functions
24 Meromorphic Functions
25 The Residue Theorem
26 The F-functions the (-function and Dirichlet Series
27 Elliptic Integrals and Elliptic Functions
28 The Riemaim Mapping Theorem
29 Power Series in Several Variables
Appendices
Appendix I: More on Point Set Topology
Appendix II: Measure Theory, Topology and Set Theory
Appendix III: More on M/Sbius Transformations
Appendix IV: Bernoulli Numbers
Solutions to Problems of Part 6
Solutions to Problems of Part 7
References
Mathematicians Contributing to Analysis (Continued)
Subject Index
編輯手記