光電集成電路設(shè)計(jì)與器件建模(英文版)
定 價(jià):59 元
- 作者:高建軍
- 出版時(shí)間:2011/1/1
- ISBN:9787040313260
- 出 版 社:高等教育出版社
- 中圖法分類(lèi):TN25
- 頁(yè)碼:262
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16開(kāi)
《光電集成電路設(shè)計(jì)與器件建模(英文版)》主要介紹微波技術(shù)在光電子集成電路設(shè)計(jì)領(lǐng)域的應(yīng)用,內(nèi)容涵蓋先進(jìn)的半導(dǎo)體光電子器件建模技術(shù)、高速光發(fā)射和接收電路設(shè)計(jì)技術(shù),器件涉及半導(dǎo)體激光器、半導(dǎo)體探測(cè)器以及多種高速半導(dǎo)體器件,特別是對(duì)于雙極晶體管和場(chǎng)效應(yīng)晶體管在超高速光電子集成電路中的應(yīng)用進(jìn)行了詳細(xì)的討論。
《光電集成電路設(shè)計(jì)與器件建模(英文版)》在微波器件建模技術(shù)和光電子集成電路設(shè)計(jì)之間架起了一座學(xué)科貫通的橋梁,非常適合微波射頻領(lǐng)域和光電子領(lǐng)域的高年級(jí)本科生、研究生和科研工作人員入門(mén)學(xué)習(xí)。
高建軍,華東師范大學(xué)教授,博士生導(dǎo)師,“紫江學(xué)者”特聘教授,中國(guó)科學(xué)院微電子研究所客座教授,中國(guó)電子學(xué)會(huì)高級(jí)會(huì)員,IEEE高級(jí)會(huì)員,2005年入選教育部“新世紀(jì)人才支持計(jì)劃”。任多個(gè)國(guó)際微波學(xué)術(shù)刊物的編委和審稿人,出版學(xué)術(shù)專(zhuān)著5部,發(fā)表SCI論文40篇,EI論文40篇。
Preface
About the Author
1 Nomenclature
Introduction
1.1 Optical Communication System
1.2 Optoelectronic Integrated Circuit Computer-Aided Design
1.3 Organization of This Book
References
2 Basic Concept of Semiconductor Laser Diodes
2.1 Introduction
2.2 Basic Concept
2.2.1 Atom Energy
2.2.2 Emission and Absorption
2.2.3 Population Inversion
2.3 Structures and Types
2.3.1 Homojunction and Heterojunction
2.3.2 Index Guiding and Gain Guiding
2.3.3 Fabry-Perot Cavity Lasers
2.3.4 Quantum-Well Lasers
2.3.5 Distributed Feedback Lasers
2.3.6 Vertical-Cavity Surface-Emitting Lasers
2.4 Laser Characteristics
2.4.1 Single-Mode Rate Equations
2.4.2 Multimode Rate Equations
2.4.3 Small-Signal Intensity Modulation
2.4.4 Small-Signal Frequency Modulation
2.4.5 Large-Signal Transit Response
2.4.6 Second Harmonic Distortion
2.4.7 Relative Intensity Noise
2.4.8 Measurement Technique
2.5 Summary
References
3 Modeling and Parameter Extraction Techniques of Lasers
3.1 Introduction
3.2 Standard Double Heterojunction Semiconductor Lasers
3.2.1 Large-Signal Model
3.2.2 Small-Signal Model
3.2.3 Noise Model
3.3 Quantum-Well Lasers
3.3.1 One-Level Equivalent Circuit Model
3.3.2 Two-Level Equivalent Circuit Model
3.3.3 Three-Level Equivalent Circuit Model
3.4 Parameter Extraction Methods
3.4.1 Direct-Extraction Method
3.4.2 Semi-Analytical Method
3.5 Summary
References
4 Microwave Modeling Techniques of Photodiodes
4.1 Introduction
4.2 Physical Principles
4.3 Figures of Merit
4.3.1 Responsivity
4.3.2 Quantum Efficiency
4.3.3 Absorption Coefficient
4.3.4 Dark Current
4.3.5 Rise Time and Bandwidth
4.3.6 Noise Currents
4.4 Microwave Modeling Techniques
4.4.1 PIN PD
4.4.2 APD
4.5 Summary
References
5 High-Speed Electronic Semiconductor Devices
5.1 Overview of Microwave Transistors
5.2 FET Modeling Technique
5.2.1 FET Small-Signal Modeling
5.2.2 FET Large-Signal Modeling
5.2.3 FET Noise Modeling
5.3 GaAs/InP HBT Modeling Technique
5.3.1 GaAs/InP HBT Nonlinear Model
5.3.2 GaAs/InP HBT Linear Model
5.3.3 GaAs/InP HBT Noise Model
5.3.4 Parameter Extraction Methods
5.4 SiGe HBT Modeling Technique
5.5 MOSFET Modeling Technique
5.5.1 MOSFET Small-Signal Model
5.5.2 MOSFET Noise Model
5.5.3 Parameter Extraction Methods
5.6 Summary
References
6 Semiconductor Laser and Modulator Driver Circuit Design
6.1 Basic Concepts
6.1.1 NRZ and RZ Data
6.1.2 Optical Modulation
6.1.3 Optical External Modulator
6.2 Optoelectronic Integration Technology
6.2.1 Monofithic Optoelectronic Integrated Circuits
6.2.2 Hybrid Optoelectronic Integrated Circuits
6.3 Laser Driver Circuit Design
6.4 Modulator Driver Circuit Design
6.4.1 FET-Based Driver Circuit
6.4.2 Bipolar Transistor-Based Driver Integrated Circuit
6.4.3 MOSFET-Based Driver Integrated Circuit
6.5 Distributed Driver Circuit Design
6.6 Passive Peaking Techniques
6.6.1 Capacitive Peaking Techniques
6.6.2 Inductive Peaking Techniques
6.7 Summary
References
7 Optical Receiver Front-End, Integrated Circuit Design
7.1 Basic Concepts of the Optical Receiver
7.1.1 Signal-to-Noise Ratio
7.1.2 Bit Error Ratio
7.1.3 Sensitivity
7.1.4 Eye Diagram
7.1.5 Signal Bandwidth
7.1.6 Dynamic Range
7.2 Front-End Circuit Design
7.2.1 Hybrid and Monolithic OEIC
7.2.2 High-Impedance Front-End
7.2.3 Transimpedance Front-End
7.3 Transi-mpedance Gain and Equivalent Input Noise Current
7.3.1 S Parameters of a Two-Port Network
7.3.2 Noise Figure of a Two-Port Network
7.3.3 Transimpedance Gain
7.3.4 Equivalent Input Noise Current
7.3.5 Simulation and Measurement of Transimpedance Gain and Equivalent Input Noise Current
7.4 Transimpedance Amplifier Circuit Design
7.4.1 BJT-Based Circuit Design
7.4.2 HBT-Based Circuit Design
7.4.3 FET-Based Circuit Design
7.4.4 MOSFET-Based Circuit Design
7.4.5 Distributed Circuit Design
7.5 Passive Peaking Techniques
7.5.1 Inductive Peaking Techniques
7.5.2 Capacitive Peaking Techniques
7.6 Matching Techniques
7.7 Summary
References
Index