關于我們
書單推薦
新書推薦
|
巖石動力學基礎與應用 讀者對象:礦業(yè)、土木、石油、水電、建筑、地球物理及安全等領域的生產(chǎn)、科研好教學人員
《巖石動力學基礎與應用》立足學科前沿,系統(tǒng)地論述了在10-1-104s-1應變率段巖石動態(tài)本構特征與能量耗散規(guī)律,應力波在巖體介質(zhì)中的傳播特性及邊界效應,應力波理論在巖土工程中的應用三大主要內(nèi)容。《巖石動力學基礎與應用》視野開闊,內(nèi)容新穎豐富,體系完整,學術性強,填補了我國沒有關于巖石沖擊動力特性專著的空白!稁r石動力學基礎與應用》論述的主要內(nèi)容具體概括為以下幾個方面:1)巖石動態(tài)試驗裝置與試驗技術;2)巖石SHPB沖擊試驗的合理加載形式;3)高應變率下的巖石本構特征;4)動靜組合加載條件下巖石的力學特性;5)動靜載荷耦合條件下巖石的切削特性;6)巖石在應力波作用下的能量耗損;7)巖體不連續(xù)面對應力波傳播的影響;8)應力波在層狀巖體中的傳播;9)巖體與炸藥的合理耦合;10)應力波下巖石電磁輻射特征;11)應力波作用下巖石破裂的聲發(fā)射規(guī)律;12)應力波理論在巖土工程中的應用。
更多科學出版社服務,請掃碼獲取。
李夕兵,中南大學教授,一直從事非煤礦山采礦與地下工程等方面的教學與科研工作。先后獲得國家杰出青年科學基金(1996)、中國青年科技獎(1996)、教育部“長江學者”獎勵計劃特聘教授(2000)、湖南省首屆科技領軍人才(2007)、科學中國人年度人物(2009)、十佳全國優(yōu)秀科技工作者提名獎(2012)等榮譽。主持過國家自然科學基金重大與重點課題,863、973課題等國家項目及重大校企合作科研項目。曾獲得國家科學技術進步獎二等獎4項以及省級自然科學獎和科學技術獎一等獎多項,獲發(fā)明專利20多項,出版專著、教材8部,在國內(nèi)外發(fā)表論文500多篇。學術兼職包括:中國巖石力學與工程學會常務理事、巖石破碎工程專業(yè)委員會主任,中國工程爆破協(xié)會常務理事,中國有色金屬學會采礦學術委員會副主任和湖南省巖石力學與工程學會理事長。
目錄
序 第1章 巖石動態(tài)試驗裝置與試驗技術 1 1.1 巖石準動態(tài)試驗裝置 2 1.1.1 快速加載試驗機原理 2 1.1.2 國內(nèi)外研制的幾種快速加載試驗機 4 1.1.3 中應變率段(10s-1)的巖石試驗方法 9 1.2 巖石動態(tài)壓縮試驗裝置與試驗技術 18 1.2.1 霍普金森實驗的沿革與發(fā)展 18 1.2.2 霍普金森壓桿裝置試驗原理 19 1.2.3 巖樣應力均勻化的簡化分析 24 1.2.4 電腦化數(shù)據(jù)采集處理系統(tǒng)原理與方法 28 1.3 自行研制的巖石沖擊加載試驗系統(tǒng) 31 1.3.1 壓氣驅(qū)動的水平?jīng)_擊試驗機 31 1.3.2 氯氣驅(qū)動的大直徑?jīng)_擊試驗機 33 1.3.3 動態(tài)試驗測試系統(tǒng) 35 1.3.4 信號與數(shù)據(jù)處理軟件 37 1.4 霍普金森壓桿的變形裝置 39 1.4.1 三軸霍普金森壓桿 39 1.4.2 霍普金森拉桿 43 1.4.3 霍普金森扭桿 45 1.4.4 其他變形裝置 47 1.5 巖石類材料動態(tài)拉伸試驗方法 49 1.5.1 動態(tài)直接拉伸試驗 49 1.5.2 動態(tài)間接拉伸試驗 50 1.5.3 動態(tài)層裂試驗 53 1.6 巖石超動態(tài)試驗裝置簡述 56 1.6.1 幾種不同類型的試驗裝置 56 1.6.2 氣體炮的工作原理 57 1.6.3 平板撞擊試驗試件布置 60 參考文獻 62 第2章 巖石沖擊試驗合理加載波形與試驗方法 67 2.1 沖頭撞擊桿件產(chǎn)生的應力波形 67 2.1.1 簡單結構沖頭產(chǎn)生的應力波形 67 2.1.2 復雜沖頭撞擊桿件的電算方法 72 2.2 矩形波波形彌散與巖石動態(tài)應力應變曲線 80 2.2.1 不同形狀應力披在桿中傳播的彌散效應 80 2.2.2 矩形被加載的應力-應變曲線 86 2.2.3 不同加載波形下應力-應變-應變率關系 89 2.3 巖石類材料動態(tài)試驗的合理加載形式 91 2.3.1 錐形沖頭加載 91 2.3.2 紡錘形沖頭加載 94 2.3.3 試樣的恒應變率變形條件與試驗驗證 96 2.4 巖石恒應變率動態(tài)本構關系獲得的新方法 99 2.4.1 SHPB試驗數(shù)據(jù)的三維散點處理方法 99 2.4.2 試驗數(shù)據(jù)的三維散點結果的解釋 103 2.5 巖石動態(tài)測試的建議方法 104 2.5.1 試驗系統(tǒng)與參數(shù) 105 2.5.2 巖石動態(tài)抗壓強度測試 105 2.5.3 動態(tài)巴西試驗測試巖石抗拉強度 107 2.5.4 1 型動態(tài)斷裂韌度測試 108 參考文獻 110 第3章 合理加載波形反演設計與試驗系統(tǒng)數(shù)值模擬 113 3.1 已知波形的沖頭形狀反演理論 113 3.1.1 等截面圓柱沖頭撞擊彈性長桿產(chǎn)生的應力波 113 3.1.2 階梯狀變截面沖頭撞擊彈性長桿時所產(chǎn)生的應力波 115 3.1.3 連續(xù)變截面沖頭撞擊時所產(chǎn)生的應力波 116 3.1.4 基于一維應力被理論的沖頭形狀反演設計 118 3.2 半正弦波對應的沖頭結構反演 119 3.2.1 不同桿件尺寸的半正弦波沖頭反演設計 120 3.2.2 半正弦波加載下的巖石動態(tài)試驗 122 3.3 紡錘形沖頭SHPB 系統(tǒng)的應力波特性 123 3.3.1 不同接觸情況下桿中應力不均勻性分析 123 3.3.2 紡錘形沖頭偏心撞擊下SHPB 桿的動態(tài)響應 127 3.4 紡錘形沖頭巖石SHPB 試驗的校驗 131 3.4.1 紡錘形沖頭沖擊速率和人射應力的關系 131 3.4.2 紡錘形沖頭SHPB 系統(tǒng)校正步驟 133 3.5 半正弦波加載SHPB 系統(tǒng)數(shù)值模擬 134 3.5.1 紡錘形沖頭SHPB 數(shù)值模擬系統(tǒng) 135 3.5.2 顆粒流SHPB 動態(tài)數(shù)值模擬 139 3.5.3 應變率效應的影響 147 參考文獻 152 第4章 動靜組合加載與溫壓耦合試驗技術 155 4.1 巖石動靜組合加載試驗技術 155 4.1.1 靜載與微擾組合加載試驗技術 156 4.1.2 基于SHPB 的動靜組合加載試驗系統(tǒng) 158 4.2 溫壓耦合巖石動載試驗裝置與技術 162 4.2.1 溫壓耦合作用下巖石動態(tài)試驗裝置 163 4.2.2 試驗方法與操作過程 164 4.3 動靜載荷耦合破碎巖石試驗系統(tǒng) 165 4.3.1 功、靜載荷耦合破碎巖石試驗原理 165 4.3.2 動、靜載荷耦合破碎巖石試驗裝置 166 4.3.3 試驗裝置可行性驗證 169 4.4 巖石真三軸電液伺服誘變擾動試驗系統(tǒng) 170 4.4.1 試驗系統(tǒng)概述 170 4.4.2 試驗技術參數(shù) 174 參考文獻 175 第5章 沖擊載荷作用下的巖石力學特性 176 5.1 巖石的動態(tài)強度 176 5.1.1 巖石的應力應變關系 177 5.1.2 巖石動態(tài)強度與應變率的關系 177 5.1.3 加載波形和延續(xù)時間的影響 185 5.1.4 巖石動態(tài)強度的尺寸效應 186 5.2 巖石動態(tài)斷裂破壞準則 192 5.2.1 Grady-Kipp 模型 192 5.2.2 Steverding-Lehnigk 動態(tài)斷裂準則 197 5.3 巖石的動態(tài)損傷累積 200 5.3.1 應力被作用下的巖石疲勞損傷 201 5.3.2 循環(huán)沖擊下巖石的損傷規(guī)律 203 5.3.3 應力波在巖體中的衰減 205 5.4 高溫下的巖石動力學特性 208 5.4.1 高祖前后巖石密度及波速特性 208 5.4.2 高溫后巖石動態(tài)拉壓力學特性 209 5.4.3 高溫后巖石動態(tài)斷裂力學特性 215 參考文獻 217 第6章 動靜組合加載下的巖石破壞特征 221 6.1 靜載與低頻擾動作用下的巖石力學特征 221 6.1.1 一維動靜組合加載 221 6.1.2 二維動靜組合加載 224 6.1.3 動靜組合加載中動載荷頻率與強度的影響 227 6.2 靜壓與強動載組合作用下的巖石力學特性 231 6.2.1 相同動載不同靜載下巖石的力學特性 231 6.2.2 相同靜載不同動載下巖石的力學特性 234 6.2.3 圍壓對組合加載巖石力學特性的影響 235 6.3 動靜組合加載下的巖石本構模型 239 6.3.1 基本假設 239 6.3.2 一維動靜組合加載下巖石的本構模型 240 6.3.3 三維動靜組合加載下巖石的本構模型 241 6.3.4 巖石動靜組合加載本構關系的試驗驗證 245 6.4 溫壓耦合作用下的巖石動態(tài)力學特性 250 6.4.1 不同靜壓下巖石動態(tài)力學性質(zhì)隨溫度變化規(guī)律 250 6.4.2 不同溫度巖石動態(tài)力學性質(zhì)隨靜壓變化規(guī)律 253 6.4.3 溫壓耦合作用下巖石動態(tài)本構模型與數(shù)值驗證 255 參考文獻 257 第7章 巖石在應力波作用下的能量耗散 258 7.1 巖石沖擊破碎時的能量分布 258 7.2 巖石在不同加載波下的能量耗散 260 7.2.1 矩形波加載 261 7.2.2 指數(shù)衰減被加載 264 7.2.3 鐘形波加載 265 7.2.4 以彈性波形式無用耗散的能量值 267 7.2.5 延續(xù)時間和被形的影響 268 7.3 應力波作用下巖石的吸能效果 269 7.3.1 巖石吸能分析 269 7.3.2 人射能、反射能、透射能與巖石吸能 271 7.3.3 不同延續(xù)時同下的巖石吸能試驗結果 274 7.4 不同加載波形下巖石破碎的耗能規(guī)律 276 7.4.1 巖石耗能與入射能的關系 276 7.4.2 不同加載條件下的破碎程度 278 7.4.3 實現(xiàn)合理破巖的應力波體系 280 7.5 動靜組合載荷下巖石破壞的耗能規(guī)律 282 7.5.1 動靜組合載府下巖石能量計算與釋能規(guī)律 282 7.5.2 三維組合加卸載下的巖石能量吸收規(guī)律 285 7.5.3 圍壓卸載對巖石吸收能量的影響 286 參考文獻 287 第8章 動靜載荷耦合作用下巖石破碎特征 290 8.1 動靜載荷耦合作用下破巖理論分析 290 8.1.1 動靜載荷耦合破巖特性曲線分析 290 8.1.2 動、靜載荷耦合作用的力學分析 292 8.1.3 動、靜載荷破巖的損傷斷裂分析 293 8.2 動靜載荷耦合作用下巖石破碎數(shù)值分析 299 8.2.1 靜載荷作用下巖石破碎的數(shù)值分析 300 8.2.2 沖擊載荷作用下巖石破碎的數(shù)值分析 301 8.2.3 動靜組合載荷作用下巖石破碎的數(shù)值分析 301 8.3 動靜載荷耦合作用下的破巖試驗 303 8.3.1 靜壓與沖擊耦合下的試驗 304 8.3.2 靜壓與沖擊耦合下的切削試驗 307 8.3.3 水射流與靜壓沖擊聯(lián)合作用破巖試驗 311 參考文獻 313 第9章 應力波在不同邊界結構面的傳播 315 9.1 一維縱波在桿性質(zhì)突變處的反射與透射 315 9.2 完全黏結條件下縱橫波的折反射關系 317 9.2.1 波在自由邊界上的反射 317 9.2.2 波在兩種介質(zhì)分界面上的反射和折射 322 9.3 可滑移條件下的折反射關系與巖體動力滑移準則 325 9.3.1 可滑移條件下的折反射關系 325 9.3.2 結構面上的能流分布與巖體動力滑移準則 331 9.3.3 爆破近區(qū)結構面的整體界面效應 334 9.4 應力波在閉合節(jié)理處的傳播 336 9.4.1 縱波在線性法向變形節(jié)理處的傳播 336 9.4.2 垂直縱波在非線性法向變形節(jié)理處的傳播 341 9.4.3 初始剛度和頻率對透反射系數(shù)的影響 342 9.5 應力波在張開節(jié)理處的傳播 346 9.5.1 應力披在張開節(jié)理處傳播的解析模型 346 9.5.2 不同應力波在張開節(jié)理處的能量傳遞規(guī)律 351 9.6 應力波在層狀巖體中的傳播 357 9.6.1 等效波阻法 357 9.6.2 應力波通過夾層后的透射應力波形 360 9.6.3 應力波遇夾層后的能量傳遞效果 365 9.7 爆轟波作用和巖石與炸藥的合理耦合準則 366 9.7.1 傳統(tǒng)的匹配觀點 367 9.7.2 藥卷爆轟與巖體的相互作用模型 368 9.7.3 巖石與炸藥的合理耦合準則~ 370 9.7.4 常規(guī)炸藥與不同巖體的合理匹配 373 參考文獻 376 第10章 應力波在含空區(qū)巖體中的傳播 378 10.1 爆炸在巖體中產(chǎn)生的應變波 378 10.1.1 線性炸藥爆炸的波形合成 378 10.1.2 測點位置與方向?qū)Σㄐ蔚挠绊?381 10.1.3 爆炸成坑的半徑范圍 388 10.2 質(zhì)點震動速率經(jīng)驗公式與評估標準 389 10.2.1 不同巖石條件下的評估標準 389 10.2.2 質(zhì)點震動峰值速率經(jīng)驗公式 391 10.2.3 含有采空區(qū)的露天臺階爆破實例 393 10.3 應力波在含空區(qū)巖體中傳播的數(shù)值模擬 398 10.3.1 幾何模型的建立 398 10.3.2 爆破荷載輸入方法 400 10.3.3 數(shù)值計算模型的建立 402 10.3.4 數(shù)值計算模型驗證 404 10.4 采空區(qū)動力穩(wěn)定性分析 405 10.4.1 巖體表面應力波傳播 405 10.4.2 臺階爆破下的采空區(qū)穩(wěn)定性分析 407 10.4.3 最小安全距離 410 參考文獻 412 第11章 應力波在含石英類壓電巖體中的傳播 414 11.1 應力波與電磁波耦合的基本模型 414 11.1.1 力電耦合波動方程 414 11.1.2 應力波與電磁波的耦合理論 415 11.2 節(jié)理對巖體電磁輻射的影響 421 11.2.1 線性節(jié)理對電磁輻射的影響 421 11.2.2 非線性節(jié)理對電磁輻射的影響 423 11.2.3 節(jié)理對電磁輻射影響的計算與討論 424 11.3 巖石電磁輻射與巖石屬性參數(shù)的關系 428 11.3.1 巖石破裂裂紋寬度 428 11.3.2 電磁輻射頻率與巖石參數(shù)的關系 430 11.3.3 電磁輻射幅值與巖石參數(shù)的關系 431 11.4 應力波傳輸效應 434 11.4.1 耦合電磁波的頻率和強度 434 11.4.2 耦合電磁波的表面效應 435 11.4.3 臨強地震與巖石破裂時電磁異,F(xiàn)象的綜合 435 參考文獻 437 第12章 菌應力巖體的擾動破裂特征與有效利用 440 12.1 高應力硬巖的板裂破壞 440 12.1.1 高應力硬巖板裂破壞的表現(xiàn)形式 440 12.1.2 硬巖單軸壓縮試驗下的板裂破壞 442 12.1.3 硬巖真三軸卸載試驗下的板裂破壞 450 12.2 沖擊載荷作用下的巖體層裂破壞 456 12.2.1 巖體層裂破壞的表現(xiàn)形式和發(fā)生條件 456 12.2.2 一維沖擊下的硬巖層裂破壞 458 12.2.3 層裂破壞過程的損傷演化關系 460 12.3 動力擾動下高應力礦柱的破壞特征 462 12.3.1 深部礦柱動力擾動的力學模型 462 12.3.2 深部礦柱動力擾動的三維數(shù)值分析 465 12.3.3 深部礦柱應變能隨擾動峰值的變化特征 469 12.4 高應力巖體分區(qū)破裂特征與動力學解釋 470 12.4.1 高應力巖體分區(qū)破裂的研究現(xiàn)狀 471 12.4.2 高應力巖體強卸荷的非連續(xù)破壞特征 475 12.4.3 高應力巖體加載的非連續(xù)破壞特征 482 12.5 高應力巖體誘導致裂與非爆連續(xù)開采 487 12.5.1 非爆連續(xù)開采理念與應用進展 487 12.5.2 巖體卸荷誘導致裂理論與應用 488 12.5.3 誘導致裂非爆連續(xù)開采可行性初探 491 參考文獻 496 第13章 深部硬巖巖爆的動力學解釋與工程防護 499 13.1 巖爆產(chǎn)生條件與發(fā)生判據(jù) 499 13.1.1 國內(nèi)外巖爆研究述評 499 13.1.2 巖爆誘因的靜力學條件與判據(jù) 501 13.1.3 硬巖深部開采動力擾動與誘發(fā)巖爆 505 13.2 彈性儲能釋放的巖爆發(fā)生判據(jù) 508 13.2.1 一維動靜組合加載試驗的巖石能量分析 508 13.2.2 基于擾動載荷下動靜能量指標的巖爆發(fā)生判據(jù) 513 13.2.3 高應力巖體動力擾動下巖爆發(fā)生的試驗室重現(xiàn) 514 13.3 有巖爆傾向性高應力巖體的支護 518 13.3.1 基于動力學的巖體支護系統(tǒng) 518 13.3.2 基于自穩(wěn)時變結構的巖爆動力源分析 521 13.3.3 動靜組合支護關鍵技術 527 13.3.4 巷道動靜組合支護實例 531 參考文獻 533 第14章 礦山巖體工程微震監(jiān)測 536 14.1 微震監(jiān)測原理 536 14.1.1 震源定位 536 14.1.2 主要微震參數(shù) 537 14.1.3 微震源機制 540 14.2 監(jiān)測網(wǎng)的確定及優(yōu)化 542 14.2.1 重點監(jiān)測區(qū)域確定 542 14.2.2 礦區(qū)應力三維數(shù)值分析 543 14.2.3 監(jiān)測點位置分布及優(yōu)化方案 546 14.3 無需預先測速的微震震源定位理論 556 14.3.1 傳統(tǒng)定位方法數(shù)學擬合形式 556 14.3.2 無需預先測速率的微震定位的數(shù)學形式 558 14.3.3 誤差分析及算例 560 14.3.4 現(xiàn)場微震震源定位的爆破試驗及分析 565 14.4 大規(guī)模開采礦山區(qū)域性危險地震預測 567 14.4.1 地震視應力和位移特性 567 14.4.2 區(qū)域性地震成核預測模型 570 14.4.3 應力狀態(tài)和變形參數(shù)時間序列 572 參考文獻 574 第15章 應力波理論在巖土工程中的應用 578 15.1 沖擊破巖 578 15.1.1 沖擊破巖機械的受力和效率分析 579 15.1.2 人射應力波形對能量傳遞效率的影響 591 15.1.3 沖擊鑿入系統(tǒng)的電算模擬 593 15.1.4 沖擊鑿巖機具設計中的幾個問題 596 15.2 樁基工程 598 15.2.1 應力波在樁基中的發(fā)展過程 598 15.2.2 波動理論在樁基工程中的應用 600 15.2.3 動測法存在的問題 609 15.3 強夯 610 15.3.1 強夯引起的波動與加固原理 611 15.3.2 錘重、落距與加固深度的關系 614 15.3.3 散體巖料的動壓固效果 616 15.4 巖土工程中的無損檢測 622 15.4.1 混凝土無損檢測 622 15.4.2 錨桿無損檢測 626 15.5 防護工程 629 15.5.1 爆炸波對地下坑道的破壞機理 629 15.5.2 坑道安全防護層厚度計算方法 631 15.5.3 地下硐室抗爆設計 633 參考文獻 638 索引 640 彩圖 CONTENTS Preface CHAPTER 1 ROCK DYNAMIC TEST APPARATUS AND TEST TECHNOLOGY 1 1.1.1 Principle of rapid loading device 2 1.1.2 Several rapid loading devices 4 1.1.3 Rock testing methods at intermedium strain rate(lOs-1) 9 1.2 Rock dynamic compressive test device and test technology 18 1.2.1 Evolution and development of SHPB 18 1.2.2 Test principle of SHPB device 19 1.2.3 Simplified analysis on stress uniformity for rock samples 24 1.2.4 Principle and method of data auto-acquisilion and processing system 28 1.3 Rock impact loading test system 31 1.3.1 Horizontal impact testing machine driven by pneumatics 31 1.3.2 Large diameter impact testing machine driven by nitrogen 33 1.3.3 Measuring system for dynamic tests 35 1.3.4 Signal and data processing sotware 37 1.4 Modified configurations of SHPB 39 1.4.1 Triaxial split Hopkinson pressure bar 39 1.4.2 Split Hopkinson tensile bar 43 1.4.3 Split Hopkinson torsion bar 45 1.4.4 Some other modified devices 47 1.5 Dynamic r.ensile test methods for rock-like materials 49 1.5.2 Indirect dynamic tensile test 50 1.6 Ultra-dynamic test instrumentations for rocks 56 1.6.1 Several differern types of test devices 56 1.6.2 Testing principle of gas gun 57 1.6.3 Specimen layout of plaie impact test 60 References 62 CHAPTER 2REASONABLE LOADING WAVEFORMS FOR ROCK IMPACT TEST AND ROCK DYNAMIC TEST METHODS 67 2.1 Stress waveform generated by pistons 67 2.1.2 Computing method of waveform generated by complex pistons 72 2.2 Dispersion of rect.angular waves and rock dynamic sl.ress-strain curves 80 2.2.1 Dispersion of propagation of different waves in rocks 80 2.2.2 Stress-strain curves of rocks obtained by SHPB with rectangular loading 72 2.2.3 Stress-strain-strain rate relationships of rocks under diferent loading waves 89 2.3 Reasonable loading ways for dynamic tests of rock-like materials 91 2.3.2 Half-sine wave loading generated by a special piston 94 2.3.3 Loading conditions for constant stain rate and experimental verification 96 2.4 New method for obtaining constitutive relations of rock at constant strain rate 99 2.4.1 Three-dimensional scatter processing method for vSHPB test data 99 2.4.2 Explanation of three-dimensional scatter processing results 103 2.5 Suggested dynamic test methods for rocks 104 2.5.1 Test system and parameters 105 2.5.2 Dynamic compressive test 105 2.5.3 Dynamic tensile test with Brazilian disc method 107 2.5.4 Dynamic fracture toughness (model) test 108 References 110 CHAPTER 3INVERSE DESIGN FOR REASONABLE LOADING WAVEFORMS AND NUMERICAL SIMULATION OF TEST SYSTEM 113 3.1 Inverse design theory for piston geometry with given waveform 113 3.1.1 Stress waveform by impact of cylindrical piston on long rod 113 3.1.2 Stress waveform by impact of variable cross-section cylindrical piston on long rod 115 3.1.3 Stress waveform by impact of conical piston on long rod 116 3.1.4 Inverse design for piston geometry based on one-dimensional stress wave theory 118 3.2 Piston design corresponding to half-sine wave 119 3.2.1 Inverse design of different size piston generating half-sine wave 120 3.2.2 Dynamic tests of rock by half-sine waves loading 122 3.3 Stress wave characteristics in SHPB system with half-since wave loading 123 3.3.1 Stress uniformity analysis of rod with different contact conditions 123 3.3.2 Dynamic response of SHPB by eccentric impact of a special piston on rod 127 3.4 Calibration of SHPB test wirh special pisl.on generating half-sine 3.4.1 Relationship between piston impact velocity and incident stress 131 3.4.2 Calibration steps for SHPB system with special piston 133 3.5 Numerical simulation of SHPB system with half-sine waveform 134 3.5.1 Numerical model of SHPB system with half-sine waveform 135 3.5.2 Numerical simulation of SHPB by particle flow method 139 3.5.3 Influence of strain rate effect 147 References 152 CHAPTER 4TEST TECHNIQUE UNDER COUPLED STATIC-DYNAMIC LOADS AND THERMAL-MECHANICAL CONDITIONS 155 4.1 Test technique for rocks under coupled static-dynamic loads 155 4.1.1 Test technique under static load and low frequency dynamic disturbance 156 4.1.2 Test system for coupled static-dynamic loads based on SHPB 158 4.2 Rock dynamic test device and r.echnology under coupled thermalmechanical condition 162 4.2.1 Rock dynamic test device under coupled thermal-mechanical condition 163 4.2.2 Experimental setup and procedure 164 4.3 Test system for rock fragmentation under combined static-dynamic loads 165 4.3.1 Test principle of rock fragmentation under combined static-dynamic loads 165 4.3.2 Test equipment of rock fragmentation under combined static-dynamic loads 166 4.4 True triaxial test system for rocks under induced disturbance 170 4.4.1 Test system description 170 4.4.2 Technical parameters of test system 174 References 175 CHAPTER 5 MECHANICAL PROPERTIES OF ROCKS UNDER IMPACT LOADS 176 5.1 Rock dynamic strength 176 5.1.1 Stress-strain relationship of rocks 177 5.1.2 Relationship beiween rock dynamic strength and strain rate 177 5.1.3 Effects of loading waveform and duration time 185 5.1.4 Size effects on rock dynamic 186 5.2 Dynamic fracture criterion of rocks 192 5.2.1 Grady-Kipp model 192 5.2.2 Steverding ehnigk dynamic fracture criterion 197 5.3 Accumulation of rock dynamic damage 200 5.3.1 Fatigue damage of rock by stress wave loading 201 5.3.2 Damage evolution law of rock under repeated impact 203 5.4 Dynamic mechanical properties of rocks at high temperature 208 5.4.1 Thermal effect on density and wave velocity of rocks 208 5.4.2 Thermal effect on dynamic tensile and compressive properties of rocks 209 5.4.3 Thermal efect on dynamic fracture properties of rocks 215 References 217 CHAPTER 6 FAILURE CHARACTERISTICS OF ROCK UNDER COUPLED STATIC-DYNAMIC LOADS 221 6.1 Mechanical properties of rock under static load and low frequency disturbance 221 6.1.1 One-dimensional coupled loads 221 6.1.2 Two-dimensional coupled loads 224 6.1.3 Inluence of frequency and magnitude of dynamic loads 227 6.2 Mechanical properties of rock under coupled static load and impact load 231 6.2.1 Influence of static load with constant impact load 231 6.2.2 Influence of impact load with constant static load 234 6.3 Constitutive models of rock under coupled static-dynamic loads 239 6.3.1 Basicassumptions 239 6.3.2 Rock constitutive models under one-dimensional coupled static-dynamic loads240 6.3.3 Rock constitutive models under three-dimensional coupled static-dynamic loads 241 6.3.4 Verification of constitutive models by tests 245 6.4 Rock dynamic propert.ies under coupled thermal-mechanical effects 250 6.4.1 Influence of temperature wirh certain static pressure 250 6.4.2 Influence of static pressure with certain temperature 253 6.4.3 Dynamic constnutive model of rock under coupled thermal-mechanical effects 255 References 257 CHAPTER 7 DISSIPATION OF STRESS WAVE ENERGY IN ROCKS 258 7.1 Energy distribur.ion in rock dynamic fragmentation 258 7.2 Energy dissipation in rock by different stress waves loading 260 7.2.1 Loading in rectangular wave 261 7.2.2 Loading in exponential wave 264 7.2.3 Loadinginbellwave 265 7.2.4 Useless dissipated elastic wave energy value in rocks 267 7.2.5 Effects of duration time and waveforms 268 7.3 Absorption of energy of stress wave in rocks 269 7.3.1 Analysis of energy absorption in rocks 269 7.3.2 Incident, reflection, transmission and absorption energy in rocks 271 7.3.3 Testing results of absorption energy of stress wave with different duration time in rocks 274 7.4 Energy dissipation in rock loading by stress wave with different loading waveforms 276 7.4.1 Relationship between energy consumption in rock and incident energy 276 7.4.2 Degree of fragmentation at different loading conditions 278 7.4.3 Stress wave form to achieve maximum rock fragmentation 280 7.5 Energy consumption law for rock failure under coupled staticdynamic loads 282 7.5.1 Calculation and test results of energy release in rock under coupled staticdynamicloads 282 7.5.2 Energy absorption law in rock under 3-D loading and unloading process 285 7.5.3 Effect of unloading c,onfining pressure on rock energy absorption 286 References 287 CHAPTER 8 CHARACTERISTICS OF ROCK FRAGMENTATION UNDER COMBINED STATIC AND DYNAMIC LOADS 290 8.1 Theoretical analysis of rock fragmentar.ion under combined loads 290 8.1.1 Rock fragmentation characteristic curves under combined loads 290 8.1.2 Mechanical analysis in rock fragmentation under combined loads 292 8.1.3 Damage and fracrure analysis in rock fragmenration under combined loads 293 8.2 Numerical analysis in rock fragmentation under combined static and 8.2.1 Numerical analysis in rock fragmentation under static load 300 8.2.2 Numerical analysis in rock fragmentation under impact load 301 8.2.3 Numerical analysis in rock fragmentation under combined loads 301 8.3 Experiments of rock fragmentation under combined static and dynamicloads 303 8.3.1 Fragmentaiion experiments under coupled static and impact loads 304 8.3.2 Cutting experiments under coupled static and impact loads 307 8.3.3 Fragmentation experiments under combined water jet and static-impact loads 311 References 313 CHAPTER 9 PROPAGATION OF STRESS WAVES AT DIFFERENT GEOLOGICAL INTERFACES 315 9.1 Reflection and transmission of one-dimensional longitudinal wave in rod 315 9.2 Reflecr.ion and refraction of P-wave and S-wave alfully bonded interfaces 317 9.2.1 Wave reflection on free surface 317 9.2.2 Wave reflection and refraction at interface of two medium 322 9.3 Wave reflection and refraction at slippery interface and dynamic slip criterion of rock mass 325 9.3.1 Wave relection and reraction at slippery interface 325 9.3.2 Energy flow distribution at interface and dynamic slip criterion of rock mass 331 9.3.3 0verall effects of interface near blasting source 334 9.4 Stress wave propagation at closed joints 336 9.4.1 P-wave propagation at joints with linear normal deformation 336 9.4.2 Vertical incident P-wave propagation at joints with non-linear normaldeformation 341 9.4.3 Effect of iniiial stiffness and frequency on reflecrion and transmission factors 342 9.5 Srress wave propagat.ion at open joints 346 9.5.1 Analytical model of slress wave propagation at open joinls 346 9.5.2 Energy transmission of stress waves with different waveforms at open joints 351 9.6 Stress wave propagation in layered rock mass 357 9.6.1 Equivalent wave impedance method 357 9.6.2 Transmitted waveform of stress wave propagated in sandwich structure 360 9.6.3 Energy transfer of stress wave through interlayer 365 9.7 Detonation wave and reasonable matching criterion between rock explosive 366 9.7.1 Traditional viewpoint of reasonable impedance matching 367 9.7.2 Interaction model of explosive detonation in rock mass 368 9.7.3 Reasonable impedance matching criterion between rock and explosive 370 9.7.4 Reasonable impedance matching between conventional explosives and different rock mass 373 References 376 CHAPTER 10 STRESS V~AVE PROPAGMION IN ROCK MASS WITH CAWIY 378 10.1 Strain waves generated by blasting in rock mass 378 10.1.1 Synthesis of wave forms generated by a linear explosive charge 378 10.1.2 Effects of position and orientation on the wave shapes 381 10.2 PPV empirical formula and damage crileria 389 10.2.1 PPV damage criterion in different rock conditions 389 10.2.3 Bench blasting in open-pit mine wirh cavity 393 10.3 Numerical simulation of stress wave propagation in rock mass with cavity 398 10.3.1 Geometric model 398 10.3.2 Input of blastingload 400 10.3.3 Numericalmodel 402 10.4 Srabiliry analysis of cavil.y under bench blasting 405 10.4.1 Stress propagation on ground surface 405 10.4.2 Stability analysis of cavity under bench blasting 407 10.4.3 Calculation of the mimmun safety distance 410 References 412 CHAPTER 11 STRESS WAVE PROPAGATION IN PIEZOELECTRIC ROCK MASS CONTAING QUARTZ 414 11.1 Coupled model between stress wave and electromagnetic wave 414 11.1.1 Coupled mechanical-electrical wave equations 414 11.1.2 Coupled theory beiween stress wave and elecrromagnetic wave 415 11.2 Effect of joint on electromagneiic emission in rock mass 421 11.2.1 Effect of linear joint on electromagnetic emission 421 11.2.2 Effect of non-linear joint on electromagnetic emission 423 11.2.3 Calculation and discussion of joint effecr on electromagnetic emission 424 11.3 Relationship between electromagner.ic emission and rock parameters 428 11.3.2 Relationship between electromagnetic emission frequency and rock parameters 430 11.3.3 Relationship between elecrromagnetic ermssion amplitude and rock mass parameters 431 11.4.1 Frequency and amplitude of electromagnetic emission 434 11.4.2 Surface effects of electromagnetic emission 435 11.4.3 Analysis on abnormal electromagnetic emission for strong shocks or at rock fracture 435 References 437 CHAPTER 12 DYNAMIC CHARACTERISTICS OF HIGHLY STRESSED ROCK MASS AND EFFECTIVE UTILIZATION OF HIGH STRESS 440 12.1 Slabbing failure of highly stressed hard rock 440 12.1.1 Performance of slabbing failure for highly stressed hard rock 440 12.1.2 Slabbing failure of hard rock under uniaxial compression 442 12.1.3 Slabbing failure of hard rock under true triaxial compression with unloading process 450 12.2 Spalling failure of rock mass under impact 456 12.2.1 Performance of spalling failure and occurrence condition 456 12.2.2 Spalling failure of hard rock under one-dimensional impact 458 12.2.3 Damage evolutionary relationship during spalling failure process 460 12.3 Failure characterist.ics of highly sr.ressed pillar under dynamic 12.3.1 Mechanical model of mining pillar under dynamic disturbance 462 12.3.2 3D numerical analysis of mining pillar under dynamic disturbance 465 12.3.3 Strain energy variation in mining pillar under different dynamic disturbance 469 12.4 Zonal disintegration of highly stressed rock mass and kinetic interpretation 470 12.4.1 Review of zonal disintegration in highly stressed rock mass 471 12.4.2 Discontinuous failure of highly stressed rock mass under unloading process 475 12.4.3 Discontinuous failure of highly stressed rock mass under excavation loadingprocess 482 12.5 Induced fracture and non-blasting continuous mining for highly-stressed rock mass 487 12.5.1 Concept and application of non-blasting continuous mining 487 12.5.2 Theory and application of induced racture by unloading in rock mass 488 12.5.3 Feasibility on non-blasting continuous mining by inducing rock fracture 491 References 496 CHAPTER 13 DYNAMIC INTERPRETATION OF ROCKBURST IN HARD ROCK AT GREAT DEPTH AND ENGINEERING PROTECTION 499 13.1 Occurrence conditions and criteria of rockburst 499 13.1.2 Mechanical conditions and criteria of rock burst 501 13.1.3 Dynamic disturbance and induced rock burst in deep mining 505 13.2 Elastic energy release criterion of rock burst 508 13.2.1 Rock energy analysis in one-dimensional coupled static-dynamic loading tes 508 13.2.2 Rock burst occurrence criterion based on both static and dynamic energy index 513 13.2.3 Laboratory simulation of rockbursi in highly siressed rock mass under dynamic disturbance 514 13.3 Rock support technology for burst-prone and highly stressed rock mass 518 13.3.1 Rock support system based on dynamics 518 13.3.2 Power source analysis for rockburst based on self-stabiliry and lime-varying structure 521 13.3.3 Support technology based on coupled static and dynamic loads 527 13.3.4 Support case based on coupLed static and dynamic loads 531 References 533 CHAPTER 14 MICROSEISMIC MONITORING IN MINING ENGINEERING 536 14.1 Theory of microseismic monitoring 536 14.1.1 Hypocentral10cation 536 14.1.2 Main microseismic parameters 537 14.1.3 Focalmechanism 540 14.2 Determination and optimization of monitoring network 542 14.2.1 Detennination of focused area 542 14.2.2 Numerical analysis of three-dimensional srress in mmes 543 14.2.3 Positional distribution and optimization of sensors 546 14.3 Theory of hypocentral location without pre-measured wave velocity 556 14.3.1 Mathematical fitting equations of traditional methods 556 14.3.2 Mathematical firting equations of hypocenrral locar.ion without pre-measured wave velocity 558 14.3.3 Error analysis and case study 560 14.3.4 Blasting experiments in situ and corresponding analysis 565 14.4 Areal hazardous seismic prediction in large-scale mining 567 14.4.1 Characteristics of apparent stress and deformation 567 14.4.2 Conceptual model of seismic nucleation for areal seismology 570 14.4.3 Time series o stress state and deformation 572 References 574 CHAPTER 15 APPLICATION OF STRESS WAVE THEORY IN GEOTECHNICAL ENGINEERING 578 15.1 Rock fragmentation by impact 578 15.1.1 Analysis on force and efficiency of impact drill machine 579 15.1.2 Influence of incident stress waveform on energy transfer efficiency 591 15.1.3 Computer simulation of percussive penetration system 593 15.1.4 Several problems on design of drilling machine 596 15.2 Pile foundation engineering 598 15.2.1 Development process of stress wave theory in pile foundation 598 15.2.2 Application of wave theory in pile foundation engineering 600 15.2.3 Problems of dynamic pile test method 609 15.3 Dynamic compaction 610 15.3.1 Induced wave by dynamic compaction and reinforcing principle 611 15.3.2 Relationship between hammer weight, drop height and reinforcing depth 614 15.3.3 Dynamic reinforcing effects of granular rock material 616 15.4 Nondestructive testing in geotechnical engineering 622 15.4.1 Nondestructive testing for concrete 622 15.4.2 Nondestructive testing for rock bolts 626 15.5 Protection engineering 629 15.5.1 Failure mechanism of underground tunnels by blasting wave 629 15.5.2 Calculation methods for safety protective layer thickness of tunnels 631 15.5.3 Anti-explosion design of underground chambers 633 References 638 INDEX 640 COLOR FIGURES
你還可能感興趣
我要評論
|