等離子體物理導(dǎo)論——空間和實(shí)驗(yàn)室應(yīng)用(英文影印版)
定 價(jià):79 元
叢書名:中外物理學(xué)精品書系
- 作者:(美)格尼特(美)巴塔查爾吉
- 出版時(shí)間:2014/10/10
- ISBN:9787301245491
- 出 版 社:北京大學(xué)出版社
- 中圖法分類:O53
- 頁(yè)碼:468
- 紙張:膠版紙
- 版次:1
- 開本:16開
《等離子體物理導(dǎo)論——空間和實(shí)驗(yàn)室應(yīng)用(英文影印版)》重點(diǎn)講述基礎(chǔ)等離子體理論,以及空間和實(shí)驗(yàn)室等離子體的應(yīng)用,內(nèi)容涵蓋單粒子運(yùn)動(dòng)、動(dòng)理學(xué)、磁動(dòng)力學(xué)、冷或熱等離子體的小振幅波、非線性現(xiàn)象和碰撞效應(yīng)等內(nèi)容。討論了行星磁層和輻射帶、在聚變?cè)O(shè)備中的等離子體的穩(wěn)定和囚禁、太陽(yáng)風(fēng)中不連續(xù)和沖擊波的傳播等應(yīng)用。
《等離子體物理導(dǎo)論——空間和實(shí)驗(yàn)室應(yīng)用(英文影印版)》適合等離子體物理領(lǐng)域的研究者、研究生和高年級(jí)本科生閱讀。
《等離子體物理導(dǎo)論——空間和實(shí)驗(yàn)室應(yīng)用(英文影印版)》為影印版學(xué)術(shù)專著,原書由劍橋大學(xué)出版社于2005年出版。等離子體物理是發(fā)展迅速的研究領(lǐng)域,其應(yīng)用也已經(jīng)非常廣泛。本書由此領(lǐng)域國(guó)際著名專家寫成,系統(tǒng)而深入地講解了等離子體物理的各種應(yīng)用。對(duì)于等離子體物理,乃至相關(guān)的各各學(xué)科的讀者來(lái)說,本書都是不可多得的佳作。
(美)格尼特(D. A. Gurnett)、(美)巴塔查爾吉,美國(guó)愛荷華大學(xué)教授。
Preface page ix
1 Introduction 1
2 Characteristic parameters of a plasma 5
2.1 Number density and temperature 5
2.2 Debye length 7
2.3 Plasma frequency 10
2.4 Cyclotron frequency 12
2.5 Collision frequency 13
2.6 Number of electrons per Debye cube 15
2.7 The de Broglie wavelength and quantum effects 17
2.8 Representative plasma parameters 18
3 Single particle motions 23
3.1 Motion in a static uniform magnetic field 23
3.2 Motion in perpendicular electric and magnetic fields 26
3.3 Gradient and curvature drifts 32 Preface page ix
1 Introduction 1
2 Characteristic parameters of a plasma 5
2.1 Number density and temperature 5
2.2 Debye length 7
2.3 Plasma frequency 10
2.4 Cyclotron frequency 12
2.5 Collision frequency 13
2.6 Number of electrons per Debye cube 15
2.7 The de Broglie wavelength and quantum effects 17
2.8 Representative plasma parameters 18
3 Single particle motions 23
3.1 Motion in a static uniform magnetic field 23
3.2 Motion in perpendicular electric and magnetic fields 26
3.3 Gradient and curvature drifts 32
3.4 Motion in a magnetic mirror field 39
3.5 Motion in a time varying magnetic field 45
3.6 Adiabatic invariants 48
3.7 The Hamiltonian method 60
3.8 Chaotic orbits 68
4 Waves in a cold plasma 75
4.1 Fourier representation of waves 75
4.2 General form of the dispersion relation 84
4.3 Waves in a cold uniform unmagnetized plasma 87
4.4 Waves in a cold uniform magnetized plasma 94
4.5 Ray paths in inhomogeneous plasmas 127
5 Kinetic theory and the moment equations 137
5.1 The distribution function 137
5.2 The Boltzmann and Vlasov equations 140
5.3 Solutions based on constants of the motion 144
5.4 The moment equations 146
5.5 Electron and ion pressure waves 155
5.6 Collisional drag force 162
5.7 Ambipolar diffusion 166
6 Magnetohydrodynamics 175
6.1 The basic equations of MHD 175
6.2 Magnetic pressure 183
6.3 Magnetic field convection and diffusion 185
6.4 The energy equation 192
6.5 Magnetohydrodynamic waves 195
6.6 Static MHD equilibrium 204
6.7 MHD stability 219
6.8 Magnetic reconnection 240
7 Discontinuities and shock waves 251
7.1 The MHD jump conditions 252
7.2 Classification of discontinuities 255
7.3 Shock waves 258
8 Electrostatic waves in a hot unmagnetized plasma 281
8.1 The Vlasov approach 281
8.2 The Landau approach 290
8.3 The plasma dispersion function 308
8.4 The dispersion relation for a multi-component plasma 311
8.5 Stability 318
9 Waves in a hot magnetized plasma 341
9.1 Linearization of the Vlasov equation 342
9.2 Electrostatic waves 345
9.3 Electromagnetic waves 367
10 Non-linear effects 391
10.1 Quasi-linear theory 391
10.2 Stationary non-linear electrostatic potentials 406
11 Collisional processes 415
11.1 Binary Coulomb collisions 416
11.2 Importance of small-angle collisions 417
11.3 The Fokker–Planck equation 420
11.4 Conductivity of a fully ionized plasma 427
11.5 Collision operator for Maxwellian distributions of electrons
and ions 431
Appendix A Symbols 435
Appendix B Vector differential operators 441
Appendix C Vector calculus identities 443
Index 445