《華章數(shù)學(xué)原版精品系列:代數(shù)(英文版·第2版)》是作者在代數(shù)領(lǐng)域數(shù)十年的智慧和經(jīng)驗的結(jié)晶。書中既介紹了矩陣運算、群、向量空間、線性算子、對稱等較為基本的內(nèi)容,又介紹了環(huán)、模型、域、伽羅瓦理論等較為高深的內(nèi)容。本書對于提高數(shù)學(xué)理解能力,增強(qiáng)對代數(shù)的興趣是非常有益處的。此外,本書的可閱讀性強(qiáng),書中的習(xí)題也很有針對性,能讓讀者很快地掌握分析和思考的方法。
作者結(jié)合這20年來的教學(xué)經(jīng)歷及讀者的反饋,對本版進(jìn)行了全面更新,更強(qiáng)調(diào)對稱性、線性群、二次數(shù)域和格等具體主題。本版的具體更新情況如下:
新增球面、乘積環(huán)和因式分解的計算方法等內(nèi)容,并補(bǔ)充給出一些結(jié)論的證明,如交錯群是簡單的、柯西定理、分裂定理等。
修訂了對對應(yīng)定理、su2 表示、正交關(guān)系等內(nèi)容的討論,并把線性變換和因子分解都拆分為兩章來介紹。
新增大量習(xí)題,并用星號標(biāo)注出具有挑戰(zhàn)性的習(xí)題。
《華章數(shù)學(xué)原版精品系列:代數(shù)(英文版·第2版)》在麻省理工學(xué)院、普林斯頓大學(xué)、哥倫比亞大學(xué)等著名學(xué)府得到了廣泛采用,是代數(shù)學(xué)的經(jīng)典教材之一。
Michael Artin,當(dāng)代領(lǐng)袖型代數(shù)學(xué)家與代數(shù)幾何學(xué)家之一,美國麻省理工學(xué)院數(shù)學(xué)系榮譽(yù)退休教授。1990年至1992年,曾擔(dān)任美國數(shù)學(xué)學(xué)會主席。由于他在交換代數(shù)與非交換代數(shù)、環(huán)論以及現(xiàn)代代數(shù)幾何學(xué)等方面做出的貢獻(xiàn),2002年獲得美國數(shù)學(xué)學(xué)會頒發(fā)的Leroy P.Steele終身成就獎。Artin的主要貢獻(xiàn)包括他的逼近定理、在解決沙法列維奇-泰特猜測中的工作以及為推廣“概形”而創(chuàng)建的“代數(shù)空間”概念。
Preface
1 Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Deternunants
1.5 Permutations
1.6 Other Formulas for the Determinant
Exercises
2 Groups
2.1 Laws ofComposition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Intege
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Ptoduct Groups
2.12 Quotient Groups
Exercises
3 VectorSpaces
3.1 SubspacesoflRn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 DirectSums
3.7 Infinite-DimensionalSpaces
Exercises
4 LinearOperators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and DiagonaIForms
4.7 JordanForm
Exercises
5 Applications ofLinear Operators
5.1 OrthogonaIMatrices and Rotations
5.2 Using Continuity
5.3 Systems ofDifferentialEquations
5.4 The Matrix Exponential
Exercises
6 Symmetry
6.1 Symmetry ofPlane Figures
6.2 Isometries
6.3 Isometries ofthe Plane
6.4 Finite Groups of Orthogonal Operators on the Pl
6.5 Discrete Groups oflsometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representations
6.12 Finite Subgroups ofthe Rotation Group
Exercises
7 More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 Groups
7.4 The Class Equation of the IcosahedraIGroup
7.5 Conjugationin the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups ofOrder12
7.9 TheFreeGroup
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
Exercises
8 BilinearForms
8.1 BilinearForms
8.2 SymmetricForms
……
9 Linear Groups
10 Group Representations
11 Rings
12 Factoring
13 Quadratic Number Fields
14 Linear Algebra in a Ring
15 Fields
16 Galois theory