Discretization and Implicit Mapping Dyna
定 價:89 元
- 作者:羅朝俊 著
- 出版時間:2015/9/1
- ISBN:9787040428353
- 出 版 社:高等教育出版社
- 中圖法分類:O322
- 頁碼:310
- 紙張:膠版紙
- 版次:1
- 開本:16開
《離散化與隱映射動力學(xué)(英文版)(精)》系統(tǒng)介紹了連續(xù)系統(tǒng)的離散化方法,并提出非線性動力系統(tǒng)的隱映射動力學(xué),同時用于預(yù)測非線性連續(xù)系統(tǒng)從周期運動到混沌的復(fù)雜性。書中首先回顧了離散非線性動力系統(tǒng)中不動點穩(wěn)定性和分岔理論,通過單步和多步離散化較完整地建立了連續(xù)動力系統(tǒng)的顯映射和隱映射算法,并系統(tǒng)地討論了非線性離散系統(tǒng)的周期-M解的隱映射動力學(xué)。提出了非線性連續(xù)系統(tǒng)周期解到混沌解的半解析法。本書可作為應(yīng)用數(shù)學(xué),物理,力學(xué),控制和其他工程學(xué)科的高年級大學(xué)生、研究生、教授、以及科研人員和工程技術(shù)人員的參考書。
羅朝俊教授為非線性動力學(xué)和力學(xué)領(lǐng)域的國際知名學(xué)者。美國南伊利諾伊大學(xué)的杰出教授,主要研究領(lǐng)域為哈密頓系統(tǒng)混沌、非線性變形體動力學(xué)、不連續(xù)動力系統(tǒng)、非線性系統(tǒng)的規(guī)則性和復(fù)雜性和微分方程的解析解與數(shù)值解。
首次展示了非線性連續(xù)系統(tǒng)周期解到混沌解的隱映射動力學(xué)討論連續(xù)系統(tǒng)的顯映射和隱映射算法建立了非線性離散動力系統(tǒng)中周期-M解的隱映射動力學(xué)提出了時滯和非時滯非線性連續(xù)系統(tǒng)中周期解和混沌解的半解析法展現(xiàn)時滯連續(xù)系統(tǒng)離散過程中時滯點的有效處理方法系統(tǒng)討論了非線性連續(xù)系統(tǒng)周期運動的離散傅里葉級數(shù)
1 Introduction
1.1 A Brief History
1.2 Book Layout
References
2 Nonlinear Discrete Systems
2.1 Definitions
2.2 Fixed Points and Stability
2.3 Stability Switching Theory
2.4 Bifurcation Theory
References
3 Discretization of Continuous Systems
3.1 Continuous Systems
3.2 Basic Discretization
3.2.1 Forward Euler's Method
3.2.2 Backward Euler's Method
3.2.3 Trapezoidal Rule Discretization
3.2.4 Midpoint Method
3.3 Introduction to Runge-Kutta Methods
3.3.1 Taylor Series Method
3.3.2 Runge-Kutta Method of Order 2
3.4 Explicit Runge-Kutta Methods
3.4.1 Runge-Kutta Method of Order 3
3.4.2 Runge-Kutta Method of Order 4
3.5 Implicit Runge-Kutta Methods
3.5.1 Polynomial Interpolation
3.5.2 Implicit Runge-Kutta Methods
3.5.3 Gauss Method
3.5.4 Radau Method
3.5.5 Lobatto Method
3.5.6 Diagonally Implicit RK Methods
3.5.7 Stability of Implicit Runge-Kutta Methods.
3.6 Multi-step Methods
3.6.1 Adams-Bashforth Methods
3.6.2 Adams-Moulton Methods
3.6.3 Explicit Adams Methods
3.6.4 Implicit Adams Methods
3.6.5 General Forms
3.7 Generalized Implicit Multi-step Methods
References
4 Implicit Mapping Dynamics
4.1 Single-Step Implicit Maps
4.2 Discrete Systems with Multiple Maps
4.3 Complete Dynamics of a Henon Map System
4.4 Multi-step Implicit Maps
5 References.
Periodic Flows in Continuous Systems
5.1 Continuous Nonlinear Systems
5.2 Continuous Time-Delay Systems
5.2.1 Interpolated Time-Delay Nodes
5.2.2 Integrated Time-Delay Nodes
5.3 Discrete Fourier Series
6 References
6 Periodic Motions to Chaos in Duffing Oscillator
6.1 Period- 1 Motions
6.2 Period-m Motions
6.3 Bifurcation Trees of Periodic Motions
6.4 Frequency-Amplitude Characteristics
6.4.1 Period-1 Motions to Chaos
6.4.2 Period-3 Motions
6.5 Numerical Simulations
Reference
Index