第1-12章是《測度論基礎(chǔ)與高等概率論》上冊,其中第1,2章是預(yù)備知識,第3-12章是測度論基礎(chǔ)。本書強(qiáng)調(diào)背景知識的深刻描述、基本概念的自然引入、科學(xué)素養(yǎng)的悄然滲透,從謀篇布局到板塊轉(zhuǎn)換,直至例題編制都精雕細(xì)琢,從章節(jié)引言到問題切人,直至定義、引理、命題、定理前的導(dǎo)語都字斟句酌。為避免初學(xué)者從初等概率論到高等概率論因躍
本書以反散射理論、Riemann-Hilbert(RH)方法和非線性速降法為工具,系統(tǒng)分析散焦NLS方程在有限密度初值下解的長時間漸近性和孤子分解,主題部分取材于Cuccagna,Jerkins和作者**研究成果。內(nèi)容主要包括散焦NLS方程初值的RH問題表示、RH問題的可解性、在孤子區(qū)域中的孤子分解和在無孤子區(qū)域中的長
《變分分析與應(yīng)用》是BorisS.Mordukhovich教授在變分分析與非光滑優(yōu)化領(lǐng)域的**專著。本書主要在有限維空間中對變分分析的關(guān)鍵概念和事實進(jìn)行系統(tǒng)和易于理解的闡述,這部分內(nèi)容包括一階廣義微分的基本結(jié)構(gòu)、集合系統(tǒng)的極點(diǎn)原理、增廣實值函數(shù)的變分原理、集值映射的適定性、上導(dǎo)數(shù)分析法則、集值算子的單調(diào)性和一階次微分分
郭柏靈論文集第十六卷收集的是郭柏靈先生發(fā)表于2018年度的主要科研論文,涉及的方程范圍寬廣,有確定性偏微分方程和隨機(jī)偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等等。這些論文具有很高的學(xué)術(shù)價值,對偏微分方程、數(shù)學(xué)物理、非線性分析、計算數(shù)學(xué)等方向的科研工作者和研究生,是極好地參考著作。
本書為首批***一流本科課程數(shù)學(xué)分析的配套教材,分上、下兩冊出版。本冊是上冊,共8章,主要講述一元函數(shù)微積分的內(nèi)容,包括集合與函數(shù)、數(shù)列極限、函數(shù)極限與連續(xù)函數(shù)、導(dǎo)數(shù)與微分、微分中值定理及應(yīng)用、不定積分、定積分、反常積分。本書每節(jié)選用了適量有代表性和啟發(fā)性的例題,還配有足夠數(shù)量的習(xí)題,其中既有一般難度的題目,也有較難的
本書主旨是以能量臨界Schrodinger方程、聚焦非線性Klein-Gordon方程為范例,向讀者介紹近年來非線性色散(波)方程研究中派生的Bourgain能量歸納法、陶哲軒I-團(tuán)隊的相互作用Morawetz估計及其局部化技術(shù)、Kenig-Merle在色散框架下發(fā)展的變分原理與剛性方法。主要涉及非線性色散方程的物理背
本書介紹了移動網(wǎng)格方法的歷史和現(xiàn)狀,作者根據(jù)這幾年對移動網(wǎng)格方法的一些研究體會,寫成此書。本書研究的移動網(wǎng)格方法要做的就是保持單元或節(jié)點(diǎn)數(shù)不變而通過重新分布節(jié)點(diǎn)位置實現(xiàn)自適應(yīng)目標(biāo)。特別地,我們將把動態(tài)網(wǎng)格與求解過程結(jié)合起來,用最適合求解問題的方式來生成網(wǎng)格,即在解的梯度大的地方網(wǎng)格自動加密,而在解的梯度小的地方網(wǎng)格自動
本書主要內(nèi)容包括偏微分方程基礎(chǔ)知識、Sobolev空間基本知識、Galerkin方法、有限元方法及其誤差估計、泊松問題的其他數(shù)值方法、不可壓縮Navier-Stokes問題有限元應(yīng)用、修正的特征有限元方法和隨機(jī)不可壓縮流問題全離散有限元方法。有些章末附有課后練習(xí),是對書中重點(diǎn)內(nèi)容的升華和延伸。本書既有經(jīng)典數(shù)值方法和理論
本書比較系統(tǒng)地論述常微分方程定性理論的基本知識,既有經(jīng)典理論,又有現(xiàn)代新方法。全書共有五章,分別是微分方程基本定理、穩(wěn)定性基本理論、周期微分方程、自治系統(tǒng)定性理論、分支理論初步。各章的每一節(jié)均配有適量的習(xí)題。
本書為數(shù)學(xué)分析的學(xué)習(xí)指導(dǎo)書,是丁彥恒、劉笑穎、吳剛編寫的《數(shù)學(xué)分析講義》第一、二、三卷的配套用書。主要內(nèi)容除了經(jīng)典的一元微積分、多元微積分、級數(shù)理論與含參積分之外,還包括拓?fù)淇臻g的映射、流形及微分形式、流形上微分形式的積分、向量分析與場論、線性賦范空間中的微分學(xué)和傅里葉變換等。為了便于讀者復(fù)習(xí)與自查,每一章(第16章除
《Hilbert型不等式的理論與應(yīng)用.上冊》利用權(quán)系數(shù)方法、實分析技巧以及特殊函數(shù)的理論,系統(tǒng)地討論了Hilbert型不等式,不僅討論了若干具體核的情形,更從一般理論上討論了各類抽象核的Hilbert型不等式最佳常數(shù)因子的參數(shù)搭配問題,進(jìn)而討論了構(gòu)建Hilbert型不等式的充分必要條件,陳述了Hilbert型不等式的最
《Hilbert型不等式的理論與應(yīng)用.下冊》利用權(quán)系數(shù)方法、實分析技巧以及特殊函數(shù)的理論,系統(tǒng)地討論了Hilbert型不等式,不僅討論了若干具體核的情形,更從一般理論上討論了各類抽象核的Hilbert型不等式最佳常數(shù)因子的參數(shù)搭配問題,進(jìn)而討論了構(gòu)建Hilbert型不等式的充分必要條件,陳述了Hilbert型不等式的最
本書重點(diǎn)介紹了凸函數(shù)的極、對偶運(yùn)算、凸集的面、多面體凸集、多面體凸函數(shù)、Helly定理、不等式系統(tǒng)等相關(guān)內(nèi)容。前兩章是對偶理論的基礎(chǔ)工具。后面則重點(diǎn)闡述了凸集的內(nèi)、外部表達(dá)形式和相關(guān)性質(zhì),并將結(jié)果應(yīng)用于線性和非線性不等式系統(tǒng)。這些內(nèi)容都是凸性理論的進(jìn)一步細(xì)化和拓展。為了增強(qiáng)可讀性,本書將抽象的概念用簡單的例子和直觀的圖
本書主要介紹分?jǐn)?shù)階擴(kuò)散方程解的存在性、正則性和穩(wěn)定性。本書的主要內(nèi)容來自作者近年來的研究成果,分為四章。第一章介紹了分?jǐn)?shù)階微積分、非線性分析和算子半群等基本知識。第二章介紹了一些分?jǐn)?shù)階擴(kuò)散方程初值(或邊值)問題解的存在性結(jié)果。第三章的主要目的是介紹分?jǐn)?shù)階擴(kuò)散方程有界解(如周期解)的存在性。第四章研究分?jǐn)?shù)自治(或非自治)
本書講述了一種理解和學(xué)習(xí)微積分的新思路。書中通過探索微積分發(fā)展歷程背后的數(shù)學(xué)動機(jī),展現(xiàn)了這一數(shù)學(xué)基本工具的魅力。作者根據(jù)自己研究和教授微積分的豐富經(jīng)驗,結(jié)合多年從事中學(xué)和大學(xué)數(shù)學(xué)教育的心得體會,對傳統(tǒng)的微積分教學(xué)方式,即大多按照從極限、微分、積分到級數(shù)的順序進(jìn)行學(xué)習(xí)的方法提出了異議,探討了一種更有趣、更易被接受和理解的
本書是編者講授數(shù)學(xué)分析與數(shù)學(xué)分析選講課程十余年經(jīng)驗的總結(jié)。全書主要內(nèi)容包括:函數(shù)的極限與連續(xù)性、實數(shù)的完備性理論、上(下)極限與半連續(xù)性、微分與廣義微分中值定理、積分理論與方法、級數(shù)理論與方法、廣義積分理論與方法、凸函數(shù)的性質(zhì)及其應(yīng)用。本書對數(shù)學(xué)分析中的一些主要思想與方法、重點(diǎn)與難點(diǎn)進(jìn)行了專題闡述,對部分內(nèi)容進(jìn)行了深化
本書主要研究無窮維希爾伯特空間框架下的分裂可行性問題。本書以非擴(kuò)張映射、單調(diào)映射、凸分析等非線性泛函分析理論為主要研究工具,系統(tǒng)介紹了分裂可行性問題解的存在性及其逼近方法的**研究結(jié)果,其主要內(nèi)容由作者長期在該領(lǐng)域的研究成果積累而成。
本書共4章。第1章為度量空間,講解度量空間的拓?fù)浣Y(jié)構(gòu)、度量空間中集合的性質(zhì)、完備的度量空間。第2章為賦范線性空間,包括賦范線性空間的結(jié)構(gòu)、有界線性算子與泛函、泛函延拓定理、有限維賦范線性空間。第3章為Hilbert空間理論,首先講解內(nèi)積空間的構(gòu)造和標(biāo)準(zhǔn)正交基,然后是Hilbert空間的主要定理,最后是Hilbert空間
本書系統(tǒng)闡述了波動方程參數(shù)反演的理論方法與數(shù)值計算方法,內(nèi)容包括奇異值分解方法、不適定問題的正則化方法、全波形反演的數(shù)值優(yōu)化方法、時間域與頻率域聲波方程和彈性波動方程的全波形反演。全書理論方法與科學(xué)計算并重,不但有嚴(yán)謹(jǐn)?shù)睦碚撏茖?dǎo)和算法描述,還有詳細(xì)的數(shù)值算例應(yīng)用及豐富的圖形結(jié)果。
數(shù)學(xué)物理方程是來源于物理、力學(xué)等自然科學(xué)及工程技術(shù)領(lǐng)域的偏微分方程。本書首先介紹了典型的數(shù)學(xué)物理模型的建立及二階線性偏微分方程的分類與化簡,然后重點(diǎn)介紹了分離變量法、特殊函數(shù)(貝塞爾函數(shù))法、行波法、積分變換法和格林函數(shù)法等應(yīng)用廣泛的數(shù)學(xué)物理方程經(jīng)典的求解方法,最后簡要介紹了某些求解非線性數(shù)學(xué)物理方程的方法,如Adom